Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study

[1]  H. Rafii-Tabar,et al.  Comparison of amino acids interaction with gold nanoparticle , 2014, Amino Acids.

[2]  Harjinder Singh,et al.  A theoretical study on interaction of proline with gold cluster , 2012, Bulletin of Materials Science.

[3]  Pierrick Craveur,et al.  PredyFlexy: flexibility and local structure prediction from sequence , 2012, Nucleic Acids Res..

[4]  Kuo-Hao Lee,et al.  Effect of Gold Nanoparticle Conjugation on Peptide Dynamics and Structure , 2012, Entropy.

[5]  S. V. Kumar,et al.  Preparation and Characterization of Gold Nanoparticles with Different Capping Agents , 2011 .

[6]  Martin Hoefling,et al.  Interaction of β-Sheet Folds with a Gold Surface , 2011, PloS one.

[7]  Shiling Yuan,et al.  Adsorption of histidine and histidine-containing peptides on Au(1 1 1): A molecular dynamics study , 2011 .

[8]  Gideon Schreiber,et al.  A quantitative, real-time assessment of binding of peptides and proteins to gold surfaces. , 2011, Chemistry.

[9]  B. Penke,et al.  Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. , 2010, Colloids and surfaces. B, Biointerfaces.

[10]  Martin Hoefling,et al.  The conformations of amino acids on a gold(111) surface. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Jacqueline M Acres,et al.  Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. , 2009, Biomacromolecules.

[12]  Stefano Corni,et al.  GolP: An atomistic force‐field to describe the interaction of proteins with Au(111) surfaces in water , 2009, J. Comput. Chem..

[13]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[14]  J. Seminario,et al.  Molecular Dynamics Simulations of the Vibrational Signature Transfer from a Glycine Peptide Chain to Nanosized Gold Clusters , 2007 .

[15]  Ya-pu Zhao,et al.  Adsorption of His-tagged peptide to Ni, Cu and Au (100) surfaces: Molecular dynamics simulation , 2007 .

[16]  Yukihiro Ozaki,et al.  Part III: Surface-Enhanced Raman Scattering of Amino Acids and Their Homodipeptide Monolayers Deposited onto Colloidal Gold Surface , 2005, Applied spectroscopy.

[17]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[18]  P. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .

[19]  K. Griebenow,et al.  The structure of tri-proline in water probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism, and electric ultraviolet circular dichroism spectroscopy. , 2003, Biopolymers.

[20]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[21]  KALJU KAHN,et al.  Parameterization of OPLS–AA force field for the conformational analysis of macrocyclic polyketides , 2002, J. Comput. Chem..

[22]  L. Nilsson,et al.  Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K , 2001 .

[23]  P Mark,et al.  298KでのTIP3P,SPC及びSPC/E水モデルの構造及び動力学 , 2001 .

[24]  M. Sudol,et al.  The importance of being proline: the interaction of proline‐rich motifs in signaling proteins with their cognate domains , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[26]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.