p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes

We demonstrate that the p-adic analysis is a natural basis for the construction of a wide variety of models of ultrametric diffusion constrained by hierarchical energy landscapes. A general analytical description in terms of the p-adic analysis is given for a class of models. Two exactly solvable examples, i.e. the ultrametric diffusion constrained by the linear energy landscape and the ultrametric diffusion with a reaction sink, are considered. We show that such models can be applied to both the relaxation in complex systems and the rate processes coupled to rearrangement of the complex surrounding.

[1]  A. Blumen,et al.  Subordination on ultrametric spaces , 1987 .

[2]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[3]  Wiersma,et al.  Real time observation of low-temperature protein motions. , 1995, Physical review letters.

[4]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[5]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[6]  B. Dragovich,et al.  THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .

[7]  H. Westerhoff,et al.  Non-equilibrium thermodynamics of light absorption , 1999 .

[8]  V. M. Gundlach,et al.  A p-Adic model for the process of thinking disturbed by physiological and information noise. , 1999, Journal of theoretical biology.

[9]  J. B. Johnson,et al.  Ligand binding to heme proteins: connection between dynamics and function. , 1991, Biochemistry.

[10]  M. Mézard,et al.  Nature of the Spin-Glass Phase , 1984 .

[11]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[12]  A. Csordás Transfer matrix calculation of the relative noise exponent in a two-dimensional percolating network , 1986 .

[13]  P. Freund,et al.  p-adic numbers in physics , 1993 .

[14]  J. Klafter,et al.  Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Wiersma,et al.  The energy landscape of myoglobin : An optical study , 1997 .

[16]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[17]  D. Wiersma,et al.  Looking into the energy landscape of myoglobin , 1995, Nature Structural Biology.

[18]  Sibani,et al.  Diffusion in hierarchies. , 1988, Physical review. A, General physics.

[19]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[20]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[21]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[22]  Hans Frauenfelder,et al.  Complexity in proteins , 1995, Nature Structural Biology.

[23]  Siegfried Bosch,et al.  p-adic Analysis , 1990 .

[24]  G. Ulrich Nienhaus,et al.  Multiplexed-Replica Exchange Molecular Dynamics with the UNRES Force-Field as an Effective Method for Exploring the Conformational Energy Landscape of Proteins. , 2006 .

[25]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[26]  H. Frauenfelder,et al.  The energy landscape in non-biological and biological molecules , 1998, Nature Structural Biology.

[27]  J. Klafter,et al.  Relaxation behaviour in ultrametric spaces , 1986 .

[28]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[29]  David Sherrington Landscape paradigms in physics and biology: Introduction and overview , 1996 .

[30]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[31]  B A Huberman,et al.  Ultradiffusion: the relaxation of hierarchical systems , 1985 .