Fault detection of the boiler unit using state space neural networks

This paper deals with the application of state space neural network models to fault detection of the boiler unit. The work describes problems such us selecting the proper threshold for compromising both fault sensitivity and early fault detection, designing proper neural network structure or calculating performance indexes. All the simulation data used in experiments are collected from the simulator of the boiler unit implemented in Matlab/Simulink.

[1]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[2]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[3]  M. Polycarpou,et al.  Learning methodology for failure detection and accommodation , 1995 .

[4]  Wojciech Cholewa,et al.  Fault Diagnosis , 2004, Springer Berlin Heidelberg.

[5]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .

[6]  M. V. Iordache,et al.  Diagnosis and Fault-Tolerant Control , 2007, IEEE Transactions on Automatic Control.

[7]  Tahar Bouthiba,et al.  Fault location in EHV transmission lines using artificial neural networks , 2004 .

[8]  Marcin Witczak,et al.  Advances in model-based fault diagnosis with evolutionary algorithms and neural networks , 2006 .

[9]  Youmin Zhang Active fault-tolerant control systems : integration of fault diagnosis and reconfigurable control , 2007 .

[10]  K. Patan Stability Analysis and the Stabilization of a Class of Discrete-Time Dynamic Neural Networks , 2007, IEEE Transactions on Neural Networks.

[11]  Towards Robustness in Neural Network Based Fault Diagnosis , 2008, Int. J. Appl. Math. Comput. Sci..

[12]  Krzysztof Patan,et al.  Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes , 2008 .

[13]  Youmin Zhang,et al.  Actuator Fault Tolerant Control Design Based on a Reconfigurable Reference Input , 2008, Int. J. Appl. Math. Comput. Sci..