One-Point AG Codes on the GK Maximal Curves

In this paper, algebraic-geometric (AG) codes associated to a recently discovered class of maximal curves are investigated. As a result, some linear codes with better parameters with respect to the previously known ones are discovered, and 70 improvements on MinT's tables ("Tables of optimal parameters for linear codes,'' University of Salzburg, Salzburg, Austria) are obtained.

[1]  Chaoping Xing,et al.  A class of linear codes with good parameters from algebraic curves , 2000, IEEE Trans. Inf. Theory.

[2]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[3]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[4]  Gábor Korchmáros,et al.  A new family of maximal curves over a finite field , 2007, 0711.0445.

[5]  P. V. Kumar,et al.  On the true minimum distance of Hermitian codes , 1992 .

[6]  Gretchen L. Matthews Weierstrass Semigroups and Codes from a Quotient of the Hermitian Curve , 2005, Des. Codes Cryptogr..

[7]  Johan P. Hansen,et al.  Algebraic Geometry Codes , 2005 .

[8]  Hao Chen,et al.  Improvements on parameters of one-point AG Codes from Hermitian curves , 2002, IEEE Trans. Inf. Theory.

[9]  H. Stichtenoth On automorphisms of geometric Goppa codes , 1990 .

[10]  Fernando Torres,et al.  On Maximal Curves , 1996 .

[11]  J. H. Lint,et al.  Algebraic-geometric codes , 1992 .

[12]  Henning Stichtenoth,et al.  Group codes on certain algebraic curves with many rational points , 1990, Applicable Algebra in Engineering, Communication and Computing.

[13]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[14]  Henning Stichtenoth,et al.  A note on Hermitian codes over GF(q2) , 1988, IEEE Trans. Inf. Theory.

[15]  H. J. Tiersma Remarks on codes from Hermitian curves , 1987, IEEE Trans. Inf. Theory.

[16]  R. F. Lax,et al.  Consecutive Weierstrass gaps and minimum distance of Goppa codes , 1993 .

[17]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[18]  Gretchen L. Matthews Codes from the Suzuki function field , 2004, IEEE Transactions on Information Theory.

[19]  Johan P. Hansen,et al.  Codes on the Klein quartic, ideals, and decoding , 1987, IEEE Trans. Inf. Theory.