Comparative evaluation of ontology-based Automatic Reference Tracking (ART)

Automatic Reference Tracking (ART) involves systematic and recursive tracking of bibliographic reference articles listed under the bibliography section of a particular research article. Automatic tracking is done by recursively extracting the references listed at the tail end of the input seed publication and further analysing the relevance of the extracted bibliographic reference listing with respect to the seed publication. Based on the relevance, the bibliographic research article is downloaded online. The objective is to automatically identify closely relevant reference articles, thereby facilitating the literature understanding of the aspiring researcher. In this paper, we try to address the issue of relevance-based ART in detail, with explanations on ontology-based semantic relevance computations for two domains: Operating Systems (OSs) and Computer networks (Comp n/ws). The results substantiate the claim of using domain ontology for various reasons, which are summarised in the paper.

[1]  M Damashek,et al.  Gauging Similarity with n-Grams: Language-Independent Categorization of Text , 1995, Science.

[2]  Parvati Iyer,et al.  Document Similarity Analysis for a Plagiarism Detection System , 2005, IICAI.

[3]  Shih-Hung Wu,et al.  A knowledge-based approach to citation extraction , 2005, IRI -2005 IEEE International Conference on Information Reuse and Integration, Conf, 2005..

[4]  Eero Hyvönen,et al.  Proceedings of 18th the International Conference on Database and Expert Systems Applications DEXA 2007, Regensburg, Germany, Springer, September 3-7, 2007 , 2007 .

[5]  William R. Hersh,et al.  TREC GENOMICS Track Overview , 2003, TREC.

[6]  M. Stumptner,et al.  Computing Semantic Similarity Using Ontologies , 2008 .

[7]  G. S. Mahalakshmi,et al.  Automatic Reference Tracking , 2009 .

[8]  Pablo Castells,et al.  An Ontology-Based Information Retrieval Model , 2005, ESWC.

[9]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[10]  Eduard H. Hovy,et al.  Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics , 2003, NAACL.

[11]  Ibrahim Kushchu,et al.  Web-based evolutionary and adaptive information retrieval , 2005, IEEE Transactions on Evolutionary Computation.

[12]  Robert L. Goldstone,et al.  Similarity Involving Attributes and Relations: Judgments of Similarity and Difference Are Not Inverses , 1990 .

[13]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[14]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[15]  Sendhilkumar Selvaraju,et al.  Design and Implementation of an Online Reference Tracking System , 2007, 2006 1st International Conference on Digital Information Management.

[16]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[17]  J. Paralič,et al.  Ontology-based Information Retrieval , 2003 .

[18]  Ted Pedersen,et al.  Using Measures of Semantic Relatedness for Word Sense Disambiguation , 2003, CICLing.

[19]  Viviana Mascardi,et al.  An Ontology-Based Similarity between Sets of Concepts , 2005, WOA.

[20]  Michael E. Lesk,et al.  Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone , 1986, SIGDOC '86.

[21]  C. J. van Rijsbergen,et al.  Information Retrieval , 1979, Encyclopedia of GIS.

[22]  Carl Lagoze,et al.  An Architecture for Automatic Reference Linking , 2001, ECDL.

[23]  P. Karthik,et al.  Automatic Reference Tracking with On-Demand Relevance Filtering Based on User's Interest , 2007, PReMI.

[24]  Vladimir A. Oleshchuk,et al.  Ontology based semantic similarity comparison of documents , 2003, 14th International Workshop on Database and Expert Systems Applications, 2003. Proceedings..

[25]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[26]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.

[27]  Euripides G. M. Petrakis,et al.  X-Similarity: Computing Semantic Similarity between Concepts from Different Ontologies , 2006, J. Digit. Inf. Manag..

[28]  Juan-Zi Li,et al.  Weighted Ontology-Based Search Exploiting Semantic Similarity , 2006, APWeb.

[29]  Graeme Hirst,et al.  Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures , 2004 .

[30]  Samy Bengio,et al.  Inferring document similarity from hyperlinks , 2005, CIKM '05.

[31]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[32]  Eero Hyvönen,et al.  A Method for Determining Ontology-Based Semantic Relevance , 2007, DEXA.

[33]  Mirella Lapata,et al.  Automatic Evaluation of Text Coherence: Models and Representations , 2005, IJCAI.

[34]  Carlo Strapparava,et al.  Corpus-based and Knowledge-based Measures of Text Semantic Similarity , 2006, AAAI.

[35]  Peter D. Turney Measuring Semantic Similarity by Latent Relational Analysis , 2005, IJCAI.

[36]  Mohamed S. Kamel,et al.  Phrase-based document similarity based on an index graph model , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[37]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[38]  Boi Faltings,et al.  OSS: A Semantic Similarity Function based on Hierarchical Ontologies , 2007, IJCAI.

[39]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[40]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .