Eulerian Gaussian beam method for high frequency wave propagation in heterogeneous media with discontinuities in one direction

Abstract. This paper generalizes the Eulerian Gaussian beam method developed in [S. Jin, H. Wu and X. Yang, Commun. Math. Sci., 6, 995–1020, 2008] to compute the high frequency wave propagation in heterogeneous media with discontinuities in one direction. The discontinuities in the wave speed correspond to the interfaces at which the incoming waves can be partially transmitted and reflected. We propose proper interface conditions to capture the reflection and transmission of Gaussian beams. These interface conditions arise naturally from an elegant combination of a Hamiltonian preserving scheme proposed in [S. Jin and X. Wen, Commun. Math. Sci., 3, 285–315, 2005] and the Eulerian Gaussian beam formulation. Numerical examples are also given to show the performance of this method.

[1]  Lexing Ying,et al.  Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation , 2010, Multiscale Model. Simul..

[2]  Hailiang Liu,et al.  Recovery of High Frequency Wave Fields for the Acoustic Wave Equation , 2009, Multiscale Model. Simul..

[3]  Xin Wen,et al.  High Order Numerical Methods to Three Dimensional Delta Function Integrals in Level Set Methods , 2010, SIAM J. Sci. Comput..

[4]  James Ralston,et al.  Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..

[5]  X. Wen HIGH ORDER NUMERICAL QUADRATURES TO ONE DIMENSIONAL DELTA FUNCTION INTEGRALS , 2008 .

[6]  Jianfeng Lu,et al.  Convergence of frozen Gaussian approximation for high‐frequency wave propagation , 2010, 1012.5055.

[7]  March,et al.  Gaussian beams and the propagation of singularities , 2014 .

[8]  Xu Yang,et al.  Frozen Gaussian Approximation for General Linear Strictly Hyperbolic Systems: Formulation and Eulerian Methods , 2010, Multiscale Model. Simul..

[9]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[10]  Xu Yang,et al.  The Gaussian Beam Methods for Schrodinger-Poisson Equations , 2010 .

[11]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[12]  Chunxiong Zheng,et al.  Gaussian beam formulations and interface conditions for the one-dimensional linear Schrödinger equation , 2011 .

[13]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[14]  Hao Wu,et al.  A Hybrid Phase-Flow Method for Hamiltonian Systems with Discontinuous Hamiltonians , 2008, SIAM J. Sci. Comput..

[15]  Olof Runborg,et al.  Taylor expansion and discretization errors in Gaussian beam superposition , 2009, 0908.3416.

[16]  Hao Wu,et al.  A Hybrid Phase Flow Method for Solving the Liouville Equation in a Bounded Domain , 2011, SIAM J. Numer. Anal..

[17]  Shingyu Leung,et al.  Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .

[18]  Shi Jin,et al.  Semi-Eulerian and High Order Gaussian Beam Methods for the Schrodinger Equation in the Semiclassical Regime ∗ , 2011 .

[19]  Lexing Ying,et al.  Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation , 2010, J. Comput. Phys..

[20]  Xin Wen,et al.  Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials ∗ , 2005 .

[21]  Jianfeng Lu,et al.  Convergence of frozen Gaussian approximation for high‐frequency wave propagation , 2010 .

[22]  Hao Wu,et al.  Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials , 2010, J. Comput. Phys..

[23]  Shi Jin,et al.  A level set method for the semiclassical limit of the Schrödinger equation with discontinuous potentials , 2010, J. Comput. Phys..

[24]  N. Tanushev Superpositions and higher order Gaussian beams , 2008 .

[25]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[26]  Xin Wen,et al.  High order numerical methods to two dimensional delta function integrals in level set methods , 2009, J. Comput. Phys..

[27]  M. Popov A new method of computation of wave fields using Gaussian beams , 1982 .

[28]  G. Hagedorn,et al.  Reflection and transmission of high frequency pulses at an interface , 1985 .

[29]  Hailiang Liu,et al.  Recovery of High Frequency Wave Fields from Phase Space-Based Measurements , 2009, Multiscale Model. Simul..

[30]  Jianliang Qian,et al.  Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime , 2009, J. Comput. Phys..

[31]  Shi Jin,et al.  Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations , 2008 .