2D Principal Component Analysis for Face and Facial-Expression Recognition

Although it shows enormous potential as a feature extractor, 2D principal component analysis produces numerous coefficients. Using a feature-selection algorithm based on a multiobjective genetic algorithm to analyze and discard irrelevant coefficients offers a solution that considerably reduces the number of coefficients, while also improving recognition rates.

[1]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[2]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[3]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[4]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[5]  Alceu de Souza Britto,et al.  Face recognition using selected 2DPCA coefficients , 2010 .

[6]  Face Recognition Using Selected 2 DPCA Coefficients , 2010 .

[7]  Daoqiang Zhang,et al.  (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition , 2005, Neurocomputing.

[8]  Mineichi Kudo,et al.  Comparison of algorithms that select features for pattern classifiers , 2000, Pattern Recognit..

[9]  M. Pietikäinen,et al.  Facial expression recognition based on local binary patterns , 2007, Pattern Recognition and Image Analysis.

[10]  Dimitrios I. Fotiadis,et al.  An automatic region based methodology for facial expression recognition , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[11]  Ganesh K. Venayagamoorthy,et al.  Recognition of facial expressions using Gabor wavelets and learning vector quantization , 2008, Eng. Appl. Artif. Intell..

[12]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[13]  Daoqiang Zhang,et al.  ( 2 D ) 2 PCA : 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition , 2005 .

[14]  Luiz Eduardo Soares de Oliveira,et al.  A Methodology for Feature Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String Recognition , 2003, Int. J. Pattern Recognit. Artif. Intell..