J an 2 01 2 Another approach to the equivalence of measure-many one-way quantum finite automata and its application ✩

In this paper, we present a much simpler, direct and elegant approach to the equivalence problem of measure many one-way quantum finite automata (MM1QFAs). The approach is essentially generalized from the work of Carlyle [J. Math. Anal. Appl. 7 (1963) 167-175]. Namely, we reduce the equivalence problem of MM-1QFAs to that of two (initial) vectors. As an application of the approach, we utilize it to address the equivalence problem of Enhanced one-way quantum finite automata (E-1QFAs) introduced by Nayak [Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 369-376]. We prove that two E-1QFAs A1 and A2 over Σ are equivalence if and only if they are n1 + n 2 2 − 1-equivalent where n1 and n2 are the numbers of states in A1 and A2, respectively.

[1]  H. S. Allen The Quantum Theory , 1928, Nature.

[2]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[3]  J. Carlyle Reduced forms for stochastic sequential machines , 1963 .

[4]  Michael A. Arbib,et al.  Theories of abstract automata , 1969, Prentice-Hall series in automatic computation.

[5]  M. W. Shields An Introduction to Automata Theory , 1988 .

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Tero Harju,et al.  The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..

[8]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[9]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[10]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[11]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[12]  Andris Ambainis,et al.  Probabilities to Accept Languages by Quantum Finite Automata , 1999, COCOON.

[13]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[14]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[15]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[16]  Jozef Gruska,et al.  Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..

[17]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[18]  Andris Ambainis,et al.  On the Class of Languages Recognizable by 1-Way Quantum Finite Automata , 2001, STACS.

[19]  Computing with quanta - impacts of quantum theory on computation , 2002, Theor. Comput. Sci..

[20]  Berndt Farwer,et al.  ω-automata , 2002 .

[21]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[22]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[23]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[24]  Daowen Qiu,et al.  Determination of equivalence between quantum sequential machines , 2006, Theor. Comput. Sci..

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  Mika Hirvensalo,et al.  Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.

[27]  Samvel K. Shoukourian,et al.  The equivalence problem of multidimensional multitape automata , 2008, J. Comput. Syst. Sci..

[28]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[29]  Daowen Qiu,et al.  A note on quantum sequential machines , 2009, Theor. Comput. Sci..

[30]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[31]  Sheng Yu,et al.  Hierarchy and equivalence of multi-letter quantum finite automata , 2008, Theor. Comput. Sci..

[32]  Daowen Qiu,et al.  Revisiting the Power and Equivalence of One-Way Quantum Finite Automata , 2010, ICIC.

[33]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.