J an 2 01 2 Another approach to the equivalence of measure-many one-way quantum finite automata and its application ✩
暂无分享,去创建一个
[1] H. S. Allen. The Quantum Theory , 1928, Nature.
[2] N. Jacobson. Lectures In Abstract Algebra , 1951 .
[3] J. Carlyle. Reduced forms for stochastic sequential machines , 1963 .
[4] Michael A. Arbib,et al. Theories of abstract automata , 1969, Prentice-Hall series in automatic computation.
[5] M. W. Shields. An Introduction to Automata Theory , 1988 .
[6] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] Tero Harju,et al. The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..
[8] Andrew Chi-Chih Yao,et al. Quantum Circuit Complexity , 1993, FOCS.
[9] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[10] Andris Ambainis,et al. 1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[11] Kazuo Iwama,et al. Undecidability on quantum finite automata , 1999, STOC '99.
[12] Andris Ambainis,et al. Probabilities to Accept Languages by Quantum Finite Automata , 1999, COCOON.
[13] Ashwin Nayak,et al. Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[14] Jozef Gruska,et al. Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.
[15] James P. Crutchfield,et al. Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..
[16] Jozef Gruska,et al. Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..
[17] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[18] Andris Ambainis,et al. On the Class of Languages Recognizable by 1-Way Quantum Finite Automata , 2001, STACS.
[19] Computing with quanta - impacts of quantum theory on computation , 2002, Theor. Comput. Sci..
[20] Berndt Farwer,et al. ω-automata , 2002 .
[21] Andris Ambainis,et al. Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..
[22] Alex Brodsky,et al. Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..
[23] Andris Ambainis,et al. Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.
[24] Daowen Qiu,et al. Determination of equivalence between quantum sequential machines , 2006, Theor. Comput. Sci..
[25] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[26] Mika Hirvensalo,et al. Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.
[27] Samvel K. Shoukourian,et al. The equivalence problem of multidimensional multitape automata , 2008, J. Comput. Syst. Sci..
[28] Daowen Qiu,et al. Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..
[29] Daowen Qiu,et al. A note on quantum sequential machines , 2009, Theor. Comput. Sci..
[30] A. C. Cem Say,et al. Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.
[31] Sheng Yu,et al. Hierarchy and equivalence of multi-letter quantum finite automata , 2008, Theor. Comput. Sci..
[32] Daowen Qiu,et al. Revisiting the Power and Equivalence of One-Way Quantum Finite Automata , 2010, ICIC.
[33] Shenggen Zheng,et al. Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.