Disparity-energy signals in perceived stereoscopic depth.

Stereopsis, the ability to sense the world in three dimensions (3D) from pairs of retinal images, functions when both images have corresponding elements. When observers view stereograms lacking a global match, they do not perceive 3D structure, whereas several cortical areas encode stereoscopic depth in the disparity energy. Whether these neural representations are exploited or ignored in perceptual decisions remains elusive. By combining contrast-reversal and delay between stereo images, we found that disparity-energy signals mediate the reversal of stereoscopic depth judgments. A crisp, adjacent plane of reference was crucial for the signal to be used in the judgments. Disparity discrimination relies on the disparity-energy signal when the stimulus has no global binocular match and is accompanied by a fixed surface of reference.

[1]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[2]  C. WILLIAM TYLER,et al.  Stereopsis in dynamic visual noise , 1974, Nature.

[3]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[4]  Colin Blakemore,et al.  Probing the human stereoscopic system with reverse correlation , 1999, Nature.

[5]  I. Fujita,et al.  Rejection of False Matches for Binocular Correspondence in Macaque Visual Cortical Area V4 , 2004, The Journal of Neuroscience.

[6]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[7]  Peter Neri,et al.  A stereoscopic look at visual cortex. , 2005, Journal of neurophysiology.

[8]  G. Orban,et al.  At Least at the Level of Inferior Temporal Cortex, the Stereo Correspondence Problem Is Solved , 2003, Neuron.

[9]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[10]  Christopher W. Tyler,et al.  A stereoscopic view of visual processing streams , 1990, Vision Research.

[11]  Bruce G. Cumming,et al.  Adaptation to Natural Binocular Disparities in Primate V1 Explained by a Generalized Energy Model , 2008, Neuron.

[12]  Stuart Anstis,et al.  Reversed Depth from Positive and Negative Stereograms , 1975 .

[13]  Ichiro Fujita,et al.  Spatial frequency integration for binocular correspondence in macaque area V4. , 2008, Journal of neurophysiology.

[14]  B G Cumming,et al.  Disparity Detection in Anticorrelated Stereograms , 1998, Perception.

[15]  Y Chen,et al.  Modeling V1 disparity tuning to time-varying stimuli. , 2001, Journal of neurophysiology.

[16]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[17]  Izumi Ohzawa,et al.  Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect , 2001, Nature Neuroscience.

[18]  JOHN Ross,et al.  Stereopsis by binocular delay , 1974, Nature.

[19]  G. DeAngelis,et al.  Linking Neural Representation to Function in Stereoscopic Depth Perception: Roles of the Middle Temporal Area in Coarse versus Fine Disparity Discrimination , 2006, The Journal of Neuroscience.

[20]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[21]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[22]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[23]  G. DeAngelis,et al.  Contribution of Middle Temporal Area to Coarse Depth Discrimination: Comparison of Neuronal and Psychophysical Sensitivity , 2003, The Journal of Neuroscience.

[24]  Bruce G Cumming,et al.  A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images , 2002, Visual Neuroscience.

[25]  A J Parker,et al.  Binocular disparity processing with opposite-contrast stimuli. , 1995 .

[26]  R Blake,et al.  Binocular Disparity Processing with Opposite-Contrast Stimuli , 1995, Perception.

[27]  A. Parker,et al.  Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. , 2004, Journal of neurophysiology.

[28]  Richard A Eagle,et al.  Reversed stereo depth and motion direction with anti-correlated stimuli , 2000, Vision Research.

[29]  Shinsuke Shimojo,et al.  Da vinci stereopsis: Depth and subjective occluding contours from unpaired image points , 1990, Vision Research.

[30]  G. DeAngelis,et al.  Contribution of Area MT to Stereoscopic Depth Perception Choice-Related Response Modulations Reflect Task Strategy , 2004, Neuron.

[31]  Russell L. De Valois,et al.  PII: S0042-6989(00)00210-8 , 2000 .

[32]  Bruce G Cumming,et al.  Effect of interocular delay on disparity-selective v1 neurons: relationship to stereoacuity and the pulfrich effect. , 2005, Journal of neurophysiology.

[33]  Robert F Hess,et al.  Stereoscopic depth but not shape perception from second-order stimuli , 1999, Vision Research.

[34]  F. A. Miles,et al.  Vergence eye movements in response to binocular disparity without depth perception , 1997, Nature.

[35]  F. A. Miles,et al.  Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. , 2001, Journal of neurophysiology.

[36]  Ichiro Fujita,et al.  Neural Correlates of Fine Depth Discrimination in Monkey Inferior Temporal Cortex , 2005, The Journal of Neuroscience.

[37]  Susumu Tachi,et al.  Unconscious adaptation: a new illusion of depth induced by stimulus features without depth , 2003, Vision Research.

[38]  Alexander I. Cogan,et al.  Depth in anticorrelated stereograms: Effects of spatial density and interocular delay , 1993, Vision Research.

[39]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[40]  David J. Fleet,et al.  Disparity tuning as simulated by a neural net , 2000, Biological Cybernetics.