Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk
暂无分享,去创建一个
Hernán Cendra | Cédric M. Campos | David Martín de Diego | H. Cendra | C. M. Campos | Viviana Alejandra Díaz | D. Martín de Diego | V. Díaz
[1] Yuri N. Fedorov,et al. Discrete Nonholonomic LL Systems on Lie Groups , 2004, math/0409415.
[2] A. Kilin,et al. The problem of drift and recurrence for the rolling Chaplygin ball , 2013 .
[3] Hernán Cendra,et al. The Lagrange-D’Alembert-Poincaré equations and integrability for the Euler’s disk , 2007 .
[4] Lars Bildsten. Viscous dissipation for Euler's disk. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Robert I. McLachlan,et al. Integrators for Nonholonomic Mechanical Systems , 2006, J. Nonlinear Sci..
[6] H. K. Moffatt,et al. Euler's disk and its finite-time singularity , 2000, Nature.
[7] Oliver M. O’Reilly,et al. The ringing of Euler's disk , 2005 .
[8] R. Cushman,et al. The Rolling Disc , 1996 .
[9] N Vandewalle,et al. Rolling and slipping motion of Euler's disk. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] Narayanan Menon,et al. Speeding to a stop: the finite-time singularity of a spinning disk. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Yuri N. Fedorov,et al. Dynamics of the discrete Chaplygin sleigh , 2005 .
[12] Jorge Cortes,et al. Non-holonomic integrators , 2001 .
[13] Jerrold E. Marsden,et al. Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .
[14] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[15] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[16] Ger van den Engh,et al. Analytical dynamics: Numismatic gyrations , 2000, Nature.
[17] Jorge Cortes. Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .
[18] James L. Hunt,et al. Does the Euler Disk slip during its motion , 2002 .
[19] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[20] Kirk T. McDonald,et al. The Rolling Motion of a Disk on a Horizontal Plane , 2000, physics/0008227.
[21] A. A. Stanislavsky,et al. Nonlinear oscillations in the rolling motion of Euler’s disk , 2001 .
[22] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[23] M. de Leon,et al. Geometric integrators and nonholonomic mechanics , 2002 .
[24] H. K. Moffatt. reply: Numismatic gyrations , 2000, Nature.
[25] Alexey V. Borisov,et al. Dynamics of rolling disk , 2005 .
[26] Eduardo Martínez,et al. Discrete Nonholonomic Lagrangian Systems on Lie Groupoids , 2007, J. Nonlinear Sci..