Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk

Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.

[1]  Yuri N. Fedorov,et al.  Discrete Nonholonomic LL Systems on Lie Groups , 2004, math/0409415.

[2]  A. Kilin,et al.  The problem of drift and recurrence for the rolling Chaplygin ball , 2013 .

[3]  Hernán Cendra,et al.  The Lagrange-D’Alembert-Poincaré equations and integrability for the Euler’s disk , 2007 .

[4]  Lars Bildsten Viscous dissipation for Euler's disk. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Robert I. McLachlan,et al.  Integrators for Nonholonomic Mechanical Systems , 2006, J. Nonlinear Sci..

[6]  H. K. Moffatt,et al.  Euler's disk and its finite-time singularity , 2000, Nature.

[7]  Oliver M. O’Reilly,et al.  The ringing of Euler's disk , 2005 .

[8]  R. Cushman,et al.  The Rolling Disc , 1996 .

[9]  N Vandewalle,et al.  Rolling and slipping motion of Euler's disk. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Narayanan Menon,et al.  Speeding to a stop: the finite-time singularity of a spinning disk. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Yuri N. Fedorov,et al.  Dynamics of the discrete Chaplygin sleigh , 2005 .

[12]  Jorge Cortes,et al.  Non-holonomic integrators , 2001 .

[13]  Jerrold E. Marsden,et al.  Geometric mechanics, Lagrangian reduction, and nonholonomic systems , 2001 .

[14]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[15]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[16]  Ger van den Engh,et al.  Analytical dynamics: Numismatic gyrations , 2000, Nature.

[17]  Jorge Cortes Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .

[18]  James L. Hunt,et al.  Does the Euler Disk slip during its motion , 2002 .

[19]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[20]  Kirk T. McDonald,et al.  The Rolling Motion of a Disk on a Horizontal Plane , 2000, physics/0008227.

[21]  A. A. Stanislavsky,et al.  Nonlinear oscillations in the rolling motion of Euler’s disk , 2001 .

[22]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[23]  M. de Leon,et al.  Geometric integrators and nonholonomic mechanics , 2002 .

[24]  H. K. Moffatt reply: Numismatic gyrations , 2000, Nature.

[25]  Alexey V. Borisov,et al.  Dynamics of rolling disk , 2005 .

[26]  Eduardo Martínez,et al.  Discrete Nonholonomic Lagrangian Systems on Lie Groupoids , 2007, J. Nonlinear Sci..