Error-resilient transmission of 3D models

In this article, we propose an error-resilient transmission method for progressively compressed 3D models. The proposed method is scalable with respect to both channel bandwidth and channel packet-loss rate. We jointly design source and channel coders using a statistical measure that (i) calculates the number of both source and channel coding bits, and (ii) distributes the channel coding bits among the transmitted refinement levels in order to maximize the expected decoded model quality. In order to keep the total number of bits before and after applying error protection the same, we transmit fewer triangles in the latter case to accommodate the channel coding bits. When the proposed method is used to transmit a typical model over a channel with a 10% packet-loss rate, the distortion (measured using the Hausdorff distance between the original and the decoded models) is reduced by 50% compared to the case when no error protection is applied.

[1]  Yao Wang,et al.  Video Processing and Communications , 2001 .

[2]  Valerio Pascucci,et al.  Error resilient transmission of compressed vrml , 1998 .

[3]  C.-C. Jay Kuo,et al.  Error-resilient coding of 3-D graphic models via adaptive mesh segmentation , 2001, IEEE Trans. Circuits Syst. Video Technol..

[4]  Leif Kobbelt,et al.  Towards robust broadcasting of geometry data , 2002, Comput. Graph..

[5]  Valerio Pascucci,et al.  Progressive compression and transmission of arbitrary triangular meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[6]  Jarek Rossignac,et al.  An Edgebreaker-Based Efficient Compression Scheme for Connectivity of Regular Meshes , 2000, CCCG.

[7]  Sally Floyd,et al.  Promoting the use of end-to-end congestion control in the Internet , 1999, TNET.

[8]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[9]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[10]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[11]  Reinhard Wilhelm,et al.  Focusing in Algorithm Explanation , 2000, IEEE Trans. Vis. Comput. Graph..

[12]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[13]  Mike M. Chow,et al.  Optimized geometry compression for real-time rendering , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[14]  Gabriel Taubin,et al.  Geometry coding and VRML , 1998, Proc. IEEE.

[15]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[16]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[17]  Bernd Girod,et al.  Robust Internet video transmission based on scalable coding and unequal error protection , 1999, Signal Process. Image Commun..

[18]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[19]  Hugues Hoppe,et al.  Efficient implementation of progressive meshes , 1998, Comput. Graph..

[20]  Yücel Altunbasak,et al.  An unequal error protection method for progressively compressed 3-D meshes , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[21]  Pierre Alliez,et al.  Progressive compression for lossless transmission of triangle meshes , 2001, SIGGRAPH.

[22]  Bernd Girod,et al.  Packet-loss-resilient Internet video streaming , 1998, Electronic Imaging.

[23]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[24]  Renato Pajarola,et al.  SQUEEZE: fast and progressive decompression of triangle meshes , 2000, Proceedings Computer Graphics International 2000.

[25]  Bruce S. Davie,et al.  Computer Networks: A Systems Approach , 1996 .

[26]  Jin Soo Choi,et al.  Geometry compression of 3-D mesh models using predictive two-stage quantization , 2000, IEEE Trans. Circuits Syst. Video Technol..

[27]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[28]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[29]  Richard E. Ladner,et al.  Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction , 2000, IEEE Journal on Selected Areas in Communications.

[30]  Kevin T. Phelps,et al.  Coding Theory: The Essentials , 1991 .

[31]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[32]  Yao Wang,et al.  Error control and concealment for video communication: a review , 1998, Proc. IEEE.

[33]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[34]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[35]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[36]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[37]  C.-C. Jay Kuo,et al.  Robust encoding of 3D mesh using data partitioning , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[38]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[39]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .