Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors

Titania nanotube arrays (TNTA) were synthesized on a titanium substrate using anodic oxidation in an electrolyte containing ammonium fluoride and evaluated for low-temperature oxygen sensing. Their sensing properties were tested at different temperatures (50, 100, 150, 200, 250 and 300 °C) when exposed to various oxygen concentrations. The as-prepared TNTA are amorphous and exhibit much higher carrier concentration than that of annealed TNTA. Such amorphous TNTA show much higher sensitivity than that of annealed TNTA, SrTiO(3) and Ga(2)O(3) sensors. This sample demonstrates the lowest detectable oxygen concentration of 200 ppm, excellent recovery and good linear correlation at 100 °C. These results indicate that TNTA are indeed very attractive oxygen-sensing materials.

[1]  G. Lu,et al.  Electron field emission of a nitrogen-doped TiO2 nanotube array , 2008, Nanotechnology.

[2]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[3]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[4]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[5]  Kengo Shimanoe,et al.  Cr-doped TiO 2 gas sensor for exhaust NO 2 monitoring , 2003 .

[6]  M. Wu,et al.  Effect of noble metal catalyst on titania exhaust gas oxygen sensor , 1993 .

[7]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[8]  Kengo Shimanoe,et al.  Cr-doped TiO2 gas sensor for exhaust NO2 monitoring , 2003 .

[9]  Yoshinori Hatanaka,et al.  Ga2O3 thin film for oxygen sensor at high temperature , 2001 .

[10]  M. Belo,et al.  The electronic structure of passive films formed on stainless steels , 1995 .

[11]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[12]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[13]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[14]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[15]  Chang sam Kim,et al.  Study on sensing properties of tin oxide CO gas sensor with low power consumption , 2002 .

[16]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[17]  M. Ogita,et al.  Oxygen sensing at high temperatures using Ga2O3 films , 2005 .

[18]  J. Bardwell,et al.  In Situ Characterization of Anodic Silicon Oxide Films by AC Impedance Measurements , 1995 .

[19]  D. Kohl Surface processes in the detection of reducing gases with SnO2-based devices , 1989 .

[20]  T. Kamiya,et al.  Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction , 2006 .

[21]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[22]  Zhong Lin Wang Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. , 2004, Annual review of physical chemistry.

[23]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[24]  Hong-Ming Lin,et al.  Gas-sensing properties of nanocrystalline TiO2 , 1997 .

[25]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[26]  J. Zou,et al.  Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity , 2008, Nanotechnology.

[27]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[28]  Daihua Zhang,et al.  Detection of NO 2 down to ppb Levels Using Individual and Multiple In 2 O 3 Nanowire Devices , 2022 .

[29]  Libo Gao,et al.  Preparation of nano-scale titania thick film and its oxygen sensitivity , 2000 .

[30]  C. Koch,et al.  Nanostructured Materials: Processing, Properties and Applications , 2006 .

[31]  J. Haber,et al.  Oxygen in Catalysis on Transition Metal Oxides , 1979 .

[32]  Prabir K. Dutta,et al.  Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor , 1999 .

[33]  O. K. Tan,et al.  A low temperature nano-structured SrTiO3 thick film oxygen gas sensor , 2004 .

[34]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[35]  P. T. Moseley,et al.  Materials selection for semiconductor gas sensors , 1992 .

[36]  Joachim Frank,et al.  High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison , 2001 .

[37]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[38]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[39]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .