HOW ARE THE EMPLACEMENT OF RARE-ELEMENT PEGMATITES, REGIONAL METAMORPHISM AND MAGMATISM INTERRELATED IN THE MOLDANUBIAN DOMAIN OF THE VARISCAN BOHEMIAN MASSIF, CZECH REPUBLIC?

The Moldanubian domain of the Variscan Bohemian Massif is characterized by a large number of rare-element pegmatites, which are of possible economic importance. In order to investigate timing relationships between emplacements of Li-bearing rare-element pegmatites and the tectonometamorphic and magmatic evolution of this domain, 10 in situ U–Pb dates of minerals of the columbite–tantalite group from eight rare-element pegmatites, belonging to different pegmatite fields, have been obtained by the LA–SF–ICP–MS technique. As in former studies, our results suggest that assimilation of common Pb is very limited, and diffusion of radiogenic Pb is of minimal importance in columbite. Two ages of emplacement have been obtained. An older episode at ~333 + 3 Ma follows closely the generalized melting event that occurred at the end of the Moravo–Moldanubian phase, during exhumation of high-pressure rocks. The younger episode, at ~325 + 4 Ma, seems to have been contemporaneous with the beginning of the Bavarian phase. The emplacement of Li-bearing rare-element pegmatites in the Moldanubian domain is the oldest known magmatic event involving rare element-enriched melts during the Variscan orogeny. Our results show that the emplacement of Li-bearing rare-element pegmatites is not genetically related with the granulite-facies metamorphism of the lower crust. Rather, the magmas could have originated directly by partial melting linked the formation of migmatites contemporaneous with the exhumation of high-pressure rocks.

[1]  J. Sláma,et al.  U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif , 2013, Journal of the Geological Society.

[2]  A. Gerdes,et al.  Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases , 2012 .

[3]  J. Sláma,et al.  Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif , 2011 .

[4]  D. Frei,et al.  U-Pb dating of columbite-tantalite from Variscan rare-elements granites and pegmatites , 2011 .

[5]  R. Romer,et al.  Paired uraninite and molybdenite dating of the Königshain granite: implications for the onset of late-Variscan magmatism in the Lausitz Block , 2011, International Journal of Earth Sciences.

[6]  M. Novák,et al.  Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic , 2010 .

[7]  U. Schaltegger,et al.  Two types of ultrapotassic plutonic rocks in the Bohemian Massif — Coeval intrusions at different crustal levels , 2010 .

[8]  J. Lekki,et al.  Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon—A case study of durbachite from the Třebíč Pluton, Bohemian Massif , 2010 .

[9]  A. Gerdes,et al.  Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS , 2009 .

[10]  K. Schulmann,et al.  An Andean type Palaeozoic convergence in the Bohemian Massif , 2009 .

[11]  W. Goessler,et al.  Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps , 2008 .

[12]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[13]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[14]  K. Schulmann,et al.  Origin of migmatites by deformation‐enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis , 2008 .

[15]  B. Leake Introduction to, and ruminations on, the Bowes Festschrift , 2007 .

[16]  F. V. Holub,et al.  The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif , 2007 .

[17]  A. Gerdes,et al.  Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany , 2006 .

[18]  R. Kaindl,et al.  P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? , 2006 .

[19]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[20]  E. Hegner,et al.  Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic , 2005 .

[21]  R. Creaser,et al.  U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite , 2005 .

[22]  C. Braithwaite,et al.  Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic , 2004 .

[23]  John M. Hughes,et al.  Mn-rich tourmaline and fluorapatite in a Variscan pegmatite from Eibenstein an der Thaya, Bohemian massif, Lower Austria , 2004 .

[24]  S. Kelley,et al.  U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS , 2004 .

[25]  R. Romer Alpha-recoil in U–Pb geochronology: effective sample size matters , 2003 .

[26]  P. O'Brien,et al.  High‐pressure granulites: formation, recovery of peak conditions and implications for tectonics , 2003 .

[27]  R. Parrish,et al.  High-resolution geochronology of Variscan granite emplacement - the South Bohemian Batholith , 2003 .

[28]  G. Ruffet,et al.  The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France) , 2002, Geological Society, London, Special Publications.

[29]  R. Romer,et al.  P-T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part II: Geochronology , 2001 .

[30]  P. O'Brien,et al.  Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria , 2001 .

[31]  P. Černý,et al.  Distinctive compositional trends in columbite-tantalite fromtwo segments of the lepidolite pegmatite at Rožná, westernMoravia, Czech Republic , 2001 .

[32]  A. Henk,et al.  Post‐collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith , 2000, Journal of the Geological Society.

[33]  E. Jelínek,et al.  Modelling Diverse Processes in the Petrogenesis of a Composite Batholith: the Central Bohemian Pluton, Central European Hercynides , 2000 .

[34]  P. O'Brien The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures , 2000, Geological Society, London, Special Publications.

[35]  W. Franke The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution , 2000, Geological Society, London, Special Publications.

[36]  M. Cuney,et al.  Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt , 1999 .

[37]  B. Grauert,et al.  Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data , 1998 .

[38]  P. Černý,et al.  NIOBIUM-TANTALUM OXIDE MINERALS FROM COMPLEX GRANITIC PEGMATITES IN THE MOLDANUBICUM, CZECH REPUBLIC : PRIMARY VERSUS SECONDARY COMPOSITIONAL TRENDS , 1998 .

[39]  P. Burns,et al.  FLUORINE VARIATION IN HAMBERGITE FROM GRANITIC PEGMATITES , 1998 .

[40]  J. Kotková,et al.  A vestige of very high-pressure (ca. 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic , 1997 .

[41]  A. Cocherie,et al.  Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary , 1997 .

[42]  R. Romer,et al.  UPb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden , 1997 .

[43]  M. Roberts,et al.  Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations , 1997 .

[44]  R. Romer,et al.  Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite , 1996 .

[45]  R. Romer,et al.  U_Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden , 1996 .

[46]  M. Novák,et al.  Compositional trends in manganocolumbite from the Puklice I pegmatite, western Moravia, Czech Republic , 1996 .

[47]  P. Černý,et al.  Pristine vs. contaminated trends in Nb,Ta-oxide minerals of the Jihlava Pegmatite District, Czech Republic , 1995 .

[48]  M. Novák,et al.  Compositional and textural evolution of pollucite in pegmatites of the moldanubicum , 1995 .

[49]  P. Černý,et al.  Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic , 1995 .

[50]  M. Novák,et al.  Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class , 1995 .

[51]  M. C. I. Cordomí,et al.  Nb-Ta-Minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends , 1995 .

[52]  R. Romer,et al.  Implications of UPb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield , 1994 .

[53]  K. H. Wedepohl,et al.  Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria , 1994 .

[54]  B. Charoy,et al.  The crystal chemistry of spodumene in some granitic aplite-pegmatite bodies of northern Portugal; a comparative review , 1992 .

[55]  F. Neubauer,et al.  Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls , 1992 .

[56]  James E. Wright,et al.  U-Pb dating of columbites: A geochronologic tool to date magmatism and ore deposits , 1992 .

[57]  A. Martín-Izard,et al.  Las mineralizaciones litiniferas del oeste de Salamanca y Zamora , 1992 .

[58]  A. Cheilletz,et al.  Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique , 1992 .

[59]  P. Matte Accretionary history and crustal evolution of the Variscan belt in Western Europe , 1991 .

[60]  D. A. Carswell Variscan high P-T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in Lower Austria , 1991 .

[61]  H. Maluski,et al.  Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing , 1990 .

[62]  R. Göd The spodumene deposit at “Weinebene”, Koralpe, Austria , 1989 .

[63]  F. Finger,et al.  The Moldanubian granitoid plutons of Austria: Chemical and isotopic studies bearing on their environmental setting , 1989 .

[64]  W. Glassley,et al.  The role of metamorphic fluid transport in the Rb-Sr isotopic resetting of shear zones: evidence from Nordre Strømfjord, West Greenland , 1984 .