HOW ARE THE EMPLACEMENT OF RARE-ELEMENT PEGMATITES, REGIONAL METAMORPHISM AND MAGMATISM INTERRELATED IN THE MOLDANUBIAN DOMAIN OF THE VARISCAN BOHEMIAN MASSIF, CZECH REPUBLIC?
暂无分享,去创建一个
M. Novák | D. Frei | K. Breiter | E. Gloaguen | J. Melleton | M. Novak
[1] J. Sláma,et al. U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif , 2013, Journal of the Geological Society.
[2] A. Gerdes,et al. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases , 2012 .
[3] J. Sláma,et al. Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif , 2011 .
[4] D. Frei,et al. U-Pb dating of columbite-tantalite from Variscan rare-elements granites and pegmatites , 2011 .
[5] R. Romer,et al. Paired uraninite and molybdenite dating of the Königshain granite: implications for the onset of late-Variscan magmatism in the Lausitz Block , 2011, International Journal of Earth Sciences.
[6] M. Novák,et al. Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic , 2010 .
[7] U. Schaltegger,et al. Two types of ultrapotassic plutonic rocks in the Bohemian Massif — Coeval intrusions at different crustal levels , 2010 .
[8] J. Lekki,et al. Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon—A case study of durbachite from the Třebíč Pluton, Bohemian Massif , 2010 .
[9] A. Gerdes,et al. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS , 2009 .
[10] K. Schulmann,et al. An Andean type Palaeozoic convergence in the Bohemian Massif , 2009 .
[11] W. Goessler,et al. Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps , 2008 .
[12] F. Corfu,et al. Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .
[13] M. Whitehouse,et al. Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .
[14] K. Schulmann,et al. Origin of migmatites by deformation‐enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis , 2008 .
[15] B. Leake. Introduction to, and ruminations on, the Bowes Festschrift , 2007 .
[16] F. V. Holub,et al. The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif , 2007 .
[17] A. Gerdes,et al. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany , 2006 .
[18] R. Kaindl,et al. P–T–t evolution of spinel–cordierite–garnet gneisses from the Sauwald Zone (Southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? , 2006 .
[19] P. Černý,et al. THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .
[20] E. Hegner,et al. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic , 2005 .
[21] R. Creaser,et al. U-Pb tantalite, Re-Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite , 2005 .
[22] C. Braithwaite,et al. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic , 2004 .
[23] John M. Hughes,et al. Mn-rich tourmaline and fluorapatite in a Variscan pegmatite from Eibenstein an der Thaya, Bohemian massif, Lower Austria , 2004 .
[24] S. Kelley,et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS , 2004 .
[25] R. Romer. Alpha-recoil in U–Pb geochronology: effective sample size matters , 2003 .
[26] P. O'Brien,et al. High‐pressure granulites: formation, recovery of peak conditions and implications for tectonics , 2003 .
[27] R. Parrish,et al. High-resolution geochronology of Variscan granite emplacement - the South Bohemian Batholith , 2003 .
[28] G. Ruffet,et al. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France) , 2002, Geological Society, London, Special Publications.
[29] R. Romer,et al. P-T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part II: Geochronology , 2001 .
[30] P. O'Brien,et al. Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss–granulite association in the Moldanubian Zone, Austria , 2001 .
[31] P. Černý,et al. Distinctive compositional trends in columbite-tantalite fromtwo segments of the lepidolite pegmatite at Rožná, westernMoravia, Czech Republic , 2001 .
[32] A. Henk,et al. Post‐collisional granite generation and HT–LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith , 2000, Journal of the Geological Society.
[33] E. Jelínek,et al. Modelling Diverse Processes in the Petrogenesis of a Composite Batholith: the Central Bohemian Pluton, Central European Hercynides , 2000 .
[34] P. O'Brien. The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures , 2000, Geological Society, London, Special Publications.
[35] W. Franke. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution , 2000, Geological Society, London, Special Publications.
[36] M. Cuney,et al. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt , 1999 .
[37] B. Grauert,et al. Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data , 1998 .
[38] P. Černý,et al. NIOBIUM-TANTALUM OXIDE MINERALS FROM COMPLEX GRANITIC PEGMATITES IN THE MOLDANUBICUM, CZECH REPUBLIC : PRIMARY VERSUS SECONDARY COMPOSITIONAL TRENDS , 1998 .
[39] P. Burns,et al. FLUORINE VARIATION IN HAMBERGITE FROM GRANITIC PEGMATITES , 1998 .
[40] J. Kotková,et al. A vestige of very high-pressure (ca. 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic , 1997 .
[41] A. Cocherie,et al. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary , 1997 .
[42] R. Romer,et al. UPb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden , 1997 .
[43] M. Roberts,et al. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations , 1997 .
[44] R. Romer,et al. Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite , 1996 .
[45] R. Romer,et al. U_Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden , 1996 .
[46] M. Novák,et al. Compositional trends in manganocolumbite from the Puklice I pegmatite, western Moravia, Czech Republic , 1996 .
[47] P. Černý,et al. Pristine vs. contaminated trends in Nb,Ta-oxide minerals of the Jihlava Pegmatite District, Czech Republic , 1995 .
[48] M. Novák,et al. Compositional and textural evolution of pollucite in pegmatites of the moldanubicum , 1995 .
[49] P. Černý,et al. Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic , 1995 .
[50] M. Novák,et al. Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class , 1995 .
[51] M. C. I. Cordomí,et al. Nb-Ta-Minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends , 1995 .
[52] R. Romer,et al. Implications of UPb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield , 1994 .
[53] K. H. Wedepohl,et al. Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria , 1994 .
[54] B. Charoy,et al. The crystal chemistry of spodumene in some granitic aplite-pegmatite bodies of northern Portugal; a comparative review , 1992 .
[55] F. Neubauer,et al. Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls , 1992 .
[56] James E. Wright,et al. U-Pb dating of columbites: A geochronologic tool to date magmatism and ore deposits , 1992 .
[57] A. Martín-Izard,et al. Las mineralizaciones litiniferas del oeste de Salamanca y Zamora , 1992 .
[58] A. Cheilletz,et al. Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique , 1992 .
[59] P. Matte. Accretionary history and crustal evolution of the Variscan belt in Western Europe , 1991 .
[60] D. A. Carswell. Variscan high P-T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in Lower Austria , 1991 .
[61] H. Maluski,et al. Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing , 1990 .
[62] R. Göd. The spodumene deposit at “Weinebene”, Koralpe, Austria , 1989 .
[63] F. Finger,et al. The Moldanubian granitoid plutons of Austria: Chemical and isotopic studies bearing on their environmental setting , 1989 .
[64] W. Glassley,et al. The role of metamorphic fluid transport in the Rb-Sr isotopic resetting of shear zones: evidence from Nordre Strømfjord, West Greenland , 1984 .