SODYUM AKRİLAT ESASLI HİDROJEL VE KRİYOJELLERİN ŞİŞME, ADSORPSİYON VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ INVESTIGATION OF SWELLING, ADSORPTION AND MECHANICAL PROPERTIES OF SODIUM ACRYLATE BASED HYDROGEL AND CRYOGELS

Bu calismada, sodyum akrilat esasli hidrojel ve kriyojellerin sisme davranislari (sisme kapasitesi, denge sisme degeri ve sisme kinetigi), boyar madde (metilen mavisi) adsorpsiyonu ve mekanik ozellikleri karsilastirmali olarak incelenmistir. Kinetik paramatreler, dogrusal ve dogrusal olmayan metotlar kullanilarak belirlenmistir. Buna ek olarak, kriyojel ve hidrojel yapilarin yuzey morfolojileri, taramali elektron mikroskobu (SEM) kullanilarak karakterize edilmistir. Analizlerden elde edilen tum sonuclar karsilastirmali olarak degerlendirilmistir. In this study, swelling behavior (swelling capacity, equilibrium swelling ratio and swelling kinetics), basic dye (methylene blue) adsorption and mechanical properties of sodium acrylate based hydrogel and cryogels were comparatively investigated. Kinetic parameters were determined using linear and non-linear methods. In addition, the surface morphologies of cryogel and hydrogel structures were characterized using by Scanning Electron Microscopy (SEM). All results obtained from analyses were comparatively evaluated. Anahtar kelimeler: Hidrojel, Kriyojel, Adsorpsiyon, Sodyum akrilat, Dogrusal ve dogrusal olmayan analiz yontemleri.

[1]  D. Berillo,et al.  Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. , 2012, Macromolecular bioscience.

[2]  B. D. De Geest,et al.  Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. , 2012, Macromolecular bioscience.

[3]  Shamik Chowdhury,et al.  Comparative Analysis of Linear and Nonlinear Methods of Estimating the Pseudo-Second-Order Kinetic Parameters for Sorption of Malachite Green onto Pretreated Rice Husk , 2011 .

[4]  G. Madras,et al.  Reversible Swelling/Deswelling Characteristics of Ethylene Glycol Dimethacrylate Cross-Linked Poly(acrylic acid-co-sodium acrylate-co-acrylamide) Superabsorbents , 2011 .

[5]  A. Sieron,et al.  Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties , 2011 .

[6]  A. Denizli,et al.  Poly(glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G. , 2010, Materials science & engineering. C, Materials for biological applications.

[7]  Junxiong Lin,et al.  Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon , 2009 .

[8]  Aiqin Wang,et al.  Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. , 2009, Journal of hazardous materials.

[9]  F. Topuz,et al.  Macroporous hydrogel beads of high toughness and superfast responsivity , 2009 .

[10]  Mingzhu Liu,et al.  Swelling mechanism of porous P(VP‐co‐MAA)/PNIPAM semi‐IPN hydrogels with various pore sizes prepared by a freeze treatment , 2009 .

[11]  K. Kar,et al.  Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. , 2009, Acta biomaterialia.

[12]  G. Güçlü,et al.  Synthesis and properties of starch‐graft‐acrylic acid/Na‐montmorillonite superabsorbent nanocomposite hydrogels , 2008 .

[13]  H. Jin,et al.  Fabrication of Organic Silk Fibroin/Multiwalled Carbon Nanotube Composite Cryogels by Freeze-Drying Method , 2008 .

[14]  M. Dinu,et al.  Preparation of Macroporous Acrylamide‐based Hydrogels: Cryogelation under Isothermal Conditions , 2007 .

[15]  Ashok Kumar,et al.  The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: Mechanical strength and swelling/de-swelling kinetics , 2007 .

[16]  M. Dinu,et al.  Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels , 2007 .

[17]  L. Altunina,et al.  Mechanical and thermal properties of cryogels and foamed cryogels produced from aqueous solutions of poly(vinyl alcohol) , 2006 .

[18]  E. Muniz,et al.  Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. , 2006, Journal of colloid and interface science.

[19]  O. Okay,et al.  Swelling–deswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels , 2006 .

[20]  S. Bajpai,et al.  Superabsorbent hydrogels for removal of divalent toxic ions. Part I: Synthesis and swelling characterization , 2005 .

[21]  Yuh-Shan Ho,et al.  Citation review of Lagergren kinetic rate equation on adsorption reactions , 2004, Scientometrics.

[22]  E. Hernáez,et al.  Cephazoline sodium release from poly(N‐isopropyl acrylamide‐co‐N,N‐dimethylacrylamide) hydrogels , 2004 .

[23]  M. Felisberti,et al.  Mechanical behaviour and biocompatibility of poly(1-vinyl-2-pyrrolidinone)-gelatin IPN hydrogels. , 2003, Biomaterials.

[24]  Nicholas A Peppas,et al.  Molecular imprinting within hydrogels. , 2002, Advanced drug delivery reviews.

[25]  Georges Geuskens,et al.  Compressive Elastic Modulus of Polyacrylamide Hydrogels and Semi-IPNs with Poly(N-isopropylacrylamide) , 2001 .

[26]  Shandong Li Sorption Studies of Acid Dye by Mixed Sorbents , 2001 .

[27]  B K Rutt,et al.  Polyvinyl alcohol-Fricke hydrogel and cryogel: two new gel dosimetry systems with low Fe3+ diffusion. , 2000, Physics in medicine and biology.

[28]  C. R. Ethier,et al.  Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method. , 1999, Biotechnology and bioengineering.

[29]  A. Knaebel,et al.  Determination of the elastic modulus of superabsorbent gel beads , 1997 .