A Multiobjective Genetic Algorithm to Find Communities in Complex Networks

A multiobjective genetic algorithm to uncover community structure in complex network is proposed. The algorithm optimizes two objective functions able to identify densely connected groups of nodes having sparse inter-connections. The method generates a set of network divisions at different hierarchical levels in which solutions at deeper levels, consisting of a higher number of modules, are contained in solutions having a lower number of communities. The number of modules is automatically determined by the better tradeoff values of the objective functions. Experiments on synthetic and real life networks show that the algorithm successfully detects the network structure and it is competitive with state-of-the-art approaches.

[1]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[2]  A. Díaz-Guilera,et al.  Synchronization and modularity in complex networks , 2007 .

[3]  A. Sima Etaner-Uyar,et al.  Multiobjective evolutionary clustering of Web user sessions: a case study in Web page recommendation , 2010, Soft Comput..

[4]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Dumitru Dumitrescu,et al.  Community Detection in Complex Networks Using Collaborative Evolutionary Algorithms , 2007, ECAL.

[6]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[7]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[8]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[9]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[10]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[11]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[12]  Alex Arenas,et al.  Community structure identification , 2005 .

[13]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[14]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[15]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[16]  Clara Pizzuti,et al.  GA-Net: A Genetic Algorithm for Community Detection in Social Networks , 2008, PPSN.

[17]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Claudio Castellano,et al.  Community Structure in Graphs , 2007, Encyclopedia of Complexity and Systems Science.

[20]  Carlos M. Fonseca,et al.  Graph partitioning through a multi-objective evolutionary algorithm: a preliminary study , 2008, GECCO '08.

[21]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[22]  Oscar Cordón,et al.  A Multiobjective Evolutionary Conceptual Clustering Methodology for Gene Annotation Within Structural Databases: A Case of Study on the Gene Ontology Database , 2008, IEEE Transactions on Evolutionary Computation.

[23]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[24]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[25]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  David Lusseau,et al.  The emergent properties of a dolphin social network , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  Mustafa Yilmaz,et al.  Genetic clustering of social networks using random walks , 2007, Comput. Stat. Data Anal..

[28]  Santo Fortunato,et al.  New benchmark in community detection , 2008 .

[29]  A. E. Eiben,et al.  Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist , 2010, EvoApplications.

[30]  Tomoyuki Hiroyasu,et al.  Multiobjective clustering with automatic k-determination for large-scale data , 2007, GECCO '07.

[31]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[32]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Bin Yang,et al.  Genetic Algorithm with Ensemble Learning for Detecting Community Structure in Complex Networks , 2009, 2009 Fourth International Conference on Computer Sciences and Convergence Information Technology.

[34]  Alex Arenas,et al.  Analysis of large social datasets by community detection , 2007 .

[35]  Xiaowei Xu,et al.  A Novel Similarity-Based Modularity Function for Graph Partitioning , 2007, DaWaK.

[36]  Amedeo Caflisch,et al.  Multistep greedy algorithm identifies community structure in real-world and computer-generated networks , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Benjamin H. Good,et al.  Performance of modularity maximization in practical contexts. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Evangelos E. Milios,et al.  Agglomerative genetic algorithm for clustering in social networks , 2009, GECCO.

[39]  A. Ferligoj,et al.  Direct multicriteria clustering algorithms , 1992 .

[40]  Sanghamitra Bandyopadhyay,et al.  A new multiobjective clustering technique based on the concepts of stability and symmetry , 2010, Knowledge and Information Systems.

[41]  Jun Du,et al.  Novel Clustering That Employs Genetic Algorithm with New Representation Scheme and Multiple Objectives , 2004, DaWaK.

[42]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[43]  Sanghamitra Bandyopadhyay,et al.  Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[45]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Multi-Objective Clustering Ensemble , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[48]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[49]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[50]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithm-Based Fuzzy Clustering of Categorical Attributes , 2009, IEEE Transactions on Evolutionary Computation.

[51]  Matthieu Latapy,et al.  Computing Communities in Large Networks Using Random Walks , 2004, J. Graph Algorithms Appl..

[52]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[53]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[54]  Javier Béjar,et al.  Clustering algorithm for determining community structure in large networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.