Oxygen vacancy-enriched bilayer flower-like structure of ZnO&NiO@C-ZnO nanorod arrays on carbon cloth with improved eletrochemical performance

[1]  Qingqing Zhao,et al.  Oxygen vacancy-engineered ultrathin NiCo2O4 nanosheet arrays derived from MOFs as an advanced electrode for supercapacitors. , 2022, Dalton Transactions.

[2]  Shuangyi Liu,et al.  Al2O3-assisted synthesis of hollow CuCo2S4 nanospheres with rich sulfur vacancies for hybrid supercapacitor , 2022, Electrochimica Acta.

[3]  Hui Li,et al.  Preparation and electrochemical capacitance of different micro morphology zinc sulfide on nickel foam for asymmetric supercapacitor , 2022, Journal of Energy Storage.

[4]  Huaping Zhao,et al.  Emerging smart design of electrodes for micro‐supercapacitors: A review , 2022, SmartMat.

[5]  R. A. Soomro,et al.  Recent advances in oxygen deficient metal oxides: Opportunities as supercapacitor electrodes , 2022, International Journal of Energy Research.

[6]  Wei Shi,et al.  Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. , 2021, Journal of colloid and interface science.

[7]  Hsun-Yi Chen,et al.  Towards bi-functional all-solid-state supercapacitor based on nickel hydroxide-reduced graphene oxide composite electrodes , 2021 .

[8]  V. Marinescu,et al.  Hydrothermal growth of ZnO/GO hybrid as an efficient electrode material for supercapacitor applications , 2021 .

[9]  Xin Zheng,et al.  Tunable ZnO/NiO heterojunction interface for supercapacitors electrodes by piezoelectric modulation , 2021 .

[10]  Mohsen Mohammadi,et al.  Transition metal oxide-based electrode materials for flexible supercapacitors: A review , 2020 .

[11]  Daewon Kim,et al.  Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors , 2020, Ultrasonics sonochemistry.

[12]  Inho Cho,et al.  A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. , 2020, Dalton transactions.

[13]  Chi-Young Lee,et al.  Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors , 2020 .

[14]  R. Boukherroub,et al.  Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors , 2019 .

[15]  K. V. Rao,et al.  Hydrothermal approached 1-D molybdenum oxide nanostructures for high-performance supercapacitor application , 2019, SN Applied Sciences.

[16]  Wenjing Wang,et al.  Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  Bairui Tao,et al.  High-performance symmetric supercapacitor based on flower-like zinc-cobalt-molybdenum hybrid metal oxide , 2019, Ionics.

[18]  Xiaohong Wang,et al.  In situ growth of ZIF-8-derived ternary ZnO/ZnCo2O4/NiO for high performance asymmetric supercapacitors. , 2019, Nanoscale.

[19]  Pengfei Yu,et al.  Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time , 2019, Crystals.

[20]  G. Cao,et al.  A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors , 2018 .

[21]  J. H. Zheng,et al.  Synthesizing a flower-like NiO and ZnO composite for supercapacitor applications , 2018, Research on Chemical Intermediates.

[22]  Narendra Pratap Singh,et al.  Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application , 2018, Journal of Materials Science: Materials in Electronics.

[23]  Wu Lei,et al.  Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability. , 2018, ACS applied materials & interfaces.

[24]  Rui Liu,et al.  MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. , 2016, Dalton transactions.

[25]  Yogita Sharma,et al.  Synthesis and characterization of ZnO flower-like structures , 2016 .

[26]  Huanwen Wang,et al.  Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life , 2015 .

[27]  A. Mohamed,et al.  Enhanced field electron emission of flower-like zinc oxide on zinc oxide nanorods grown on carbon nanotubes , 2015 .

[28]  Yue Zhang,et al.  Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor. , 2015, ACS applied materials & interfaces.

[29]  Teng Zhai,et al.  Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors , 2014 .

[30]  H. Duan,et al.  Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors. , 2014, ACS applied materials & interfaces.

[31]  H. Pang,et al.  Mesoporous 3D ZnO–NiO architectures for high-performance supercapacitor electrode materials , 2014 .

[32]  D. Riley,et al.  Tunable synthesis of ordered zinc oxide nanoflower-like arrays. , 2013, Journal of colloid and interface science.

[33]  Pooi See Lee,et al.  Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device , 2012 .

[34]  J. Chen,et al.  Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. , 2012, Dalton transactions.

[35]  Wei Huang,et al.  Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications , 2012 .

[36]  Yuan‐Chang Liang Growth and physical properties of three-dimensional flower-like zinc oxide microcrystals , 2012 .

[37]  Leqing Fan,et al.  Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte , 2011 .

[38]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[39]  Jingkun Xu,et al.  Binder-Free and Flexible Carbon-Encapsulated Oxygen-Vacancy Cerium Dioxide Electrode for High-Performance Supercapacitor , 2021 .

[40]  M. M. Hossain,et al.  Nanoforests composed of ZnO/C core–shell hexagonal nanosheets: fabrication and growth in a sealed thermolysis reactor and optical properties , 2014, Journal of Materials Science.