Static and fatigue tests of bimetal Zr-steel made by explosive welding

[1]  L. Śnieżek,et al.  Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding , 2016 .

[2]  L. Lityńska-Dobrzyńska,et al.  Microstructure and Phase Constitution Near the Interface of Explosively Welded Aluminum/Copper Plates , 2013, Metallurgical and Materials Transactions A.

[3]  M. Kowalski,et al.  Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading , 2013 .

[4]  H. Paul,et al.  The Effect of Stand-Off Distance on the Structure and Properties of Zirconium - Carbon Steel Bimetal Produced by Explosion Welding , 2012 .

[5]  D. Rozumek,et al.  Crack growth rate under cyclic bending in the explosively welded steel/titanium bimetals , 2012 .

[6]  D. Rozumek,et al.  The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading , 2012 .

[7]  H. Paul,et al.  Microstructural and Chemical Composition Changes in the Bonding Zone of Explosively Welded Sheets , 2011, Archives of Metallurgy and Materials.

[8]  Dierk Raabe,et al.  Hierarchical microstructure of explosive joints: Example of titanium to steel cladding , 2011 .

[9]  D. Rozumek,et al.  Empirical formulas for description of the fatigue crack growth rate , 2010 .

[10]  Dariusz Rozumek,et al.  Influence of the slot inclination angle in FeP04 steel on fatigue crack growth under tension , 2009 .

[11]  R. Kaçar,et al.  An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel , 2004 .

[12]  B. Crossland,et al.  Explosive welding of metals and its application , 1982 .

[13]  V. M. Kudinov,et al.  Shock hardening of low-carbon steel plates at variable impact angle , 1967 .