The Maria asteroid family: Genetic relationships and a plausible source of mesosiderites near the 3:1 Kirkwood Gap

Abstract We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000–2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4–2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschle, Ch., Froeschle, C., [1993]. Icarus 101, 174–187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.

[1]  L. McFadden,et al.  CCD reflectance spectra of selected asteroids. I - Presentation and data analysis considerations , 1992 .

[2]  J. Hadjidemetriou Asteroid motion near the 3 : 1 resonance , 1993 .

[3]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[4]  A. Chamberlin,et al.  Near infrared reflectance spectra: Applications to problems in asteroid-meteorite relationships , 1991 .

[5]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[6]  M. Moons,et al.  Numerical Evidence on the Chaotic Nature of the 3/1 Mean Motion Commensurability , 1995 .

[7]  R. Greenberg,et al.  Asteroids and meteorites - Parent bodies and delivered samples , 1983 .

[8]  C. Barbieri,et al.  Veritas Asteroid Family: Remarkable Spectral Differences Inside a Primitive Parent Body , 1997 .

[9]  Richard P. Binzel,et al.  Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences , 2001 .

[10]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[11]  M. Gaffey,et al.  Mineralogical characterization of near-Earth Asteroid (1036) Ganymed , 2011 .

[12]  M. Moons,et al.  Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases , 1995 .

[13]  Clark R. Chapman,et al.  SPACE WEATHERING OF ASTEROID SURFACES , 2004 .

[14]  J. Gradie,et al.  Asteroid Families: Observational Evidence for Common Origins , 1977, Science.

[15]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[16]  I. Franchi,et al.  Reflectance spectra of Mesosiderites: Implications for asteroid 4 Vesta , 2007 .

[17]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[18]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[19]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[20]  J. Wisdom A perturbative treatment of motion near the 3/1 commensurability , 1985 .

[21]  M. Gaffey,et al.  Mineralogical-petrological characterization of near-Earth asteroids , 1984 .

[22]  T. Galushina,et al.  Evolution of near-Earth asteroids close to mean motion resonances , 2001 .

[23]  Klaus Keil,et al.  Thermal alteration of asteroids: evidence from meteorites , 2000 .

[24]  D. Mittlefehldt,et al.  Evolutionary history of the mesosiderite asteroid - A chronologic and petrologic synthesis , 1993 .

[25]  V. V. Markellos,et al.  Dynamical trapping and evolution in the solar system; Proceedings of the Seventy-fourth Colloquium, Gerakini, Greece, August 30-September 2, 1982 , 1983 .

[26]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[27]  J. Sunshine,et al.  Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid , 2003 .

[28]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[29]  Vokrouhlick,et al.  Semimajor axis mobility of asteroidal fragments , 1999, Science.

[30]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[31]  M. Fulchignoni,et al.  First disk-resolved spectroscopy of (4) Vesta , 2009, 0912.3628.

[32]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[33]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[34]  Alain Doressoundiram,et al.  The puzzling case of the Nysa-Polana family finally solved ? , 1998 .

[35]  Paul A. Abell,et al.  Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids , 2005 .

[36]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[37]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[38]  K. Tsiganis,et al.  Stable Chaos versus Kirkwood Gaps in the Asteroid Belt: A Comparative Study of Mean Motion Resonances , 2002 .

[39]  C. Pieters,et al.  Evidence of space weathering in regolith breccias I: Lunar regolith breccias , 2005 .

[40]  M. Yoshikawa Motions of asteroids at the Kirkwood gaps: I. On the 3:1 resonance with Jupiter , 1990 .

[41]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[42]  J. Bell Mineralogical clues to the origins of asteroid dynamical families , 1989 .

[43]  Alberto Cellino,et al.  Maria's Family: Physical Structure and Possible Implications for the Origin of Giant NEAs , 1997 .

[44]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[45]  Michael J. Gaffey,et al.  Space weathering and the interpretation of asteroid reflectance spectra , 2010 .

[46]  Lin Liu,et al.  Revisit of Dynamical Mechanisms of Transporting Asteroids in the 3:1 Resonance to the Near-Earth Space , 2007 .

[47]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[48]  C. Pieters,et al.  Evidence of space weathering in regolith breccias II: Asteroidal regolith breccias , 2010 .

[49]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[50]  J. Bell,et al.  Asteroid families - Physical properties and evolution , 1989 .

[51]  Michael J. Gaffey,et al.  Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids , 1992 .

[52]  D. L. Rabinowitz,et al.  Are Main-Belt Asteroids a Sufficient Source for the Earth-Approaching Asteroids? , 1997 .

[53]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[54]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[55]  Y. Kozai Families of Asteroids , 1978 .

[56]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[57]  M. Gaffey,et al.  A critical evaluation of oxidation versus reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy , 2002 .

[58]  R. Binzel,et al.  Deriving Formulas from HED Spectra for Determining the Pyroxene Mineralogy of Vesta and Vestoids , 2007 .

[59]  Joseph A. Burns,et al.  Dynamical Evolution of Main Belt Meteoroids: Numerical Simulations Incorporating Planetary Perturbations and Yarkovsky Thermal Forces , 2000 .

[60]  M. Barucci,et al.  A VISIBLE SPECTROSCOPIC SURVEY OF THE FLORA CLAN , 1998 .

[61]  R. N. Clark,et al.  A LARGE-SCALE INTERACTIVE ONE-DIMENSIONAL ARRAY PROCESSING SYSTEM , 1980 .

[62]  C. Russell,et al.  Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope , 2010 .

[63]  T. J. McCoy,et al.  A COORDINATED MINERALOGICAL, SPECTRAL, AND COMPOSITIONAL STUDY OF ORDINARY CHONDRITES: IMPLICATIONS FOR ASTEROID SPECTROSCOPIC CLASSIFICATION. T.L. Dunn , 2010 .

[64]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[65]  A. Davis,et al.  Differentiation history of the mesosiderite parent body: constraints from trace elements and manganese-chromium isotope systematics in Vaca Muerta silicate clasts , 2003 .

[66]  A. Rubin A History of the Mesosiderite Asteroid , 1997 .

[67]  J. Delaney,et al.  Olivine clasts from mesosiderites and howardites - Clues to the nature of achondritic parent bodies , 1980 .

[68]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[69]  M. Gaffey,et al.  Asteroid surface materials: Mineralogical characterizations from reflectance spectra , 1977 .

[70]  M. Fulchignoni,et al.  Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia's fly-by , 2009 .

[71]  M. Gaffey,et al.  Mineralogical and petrological characterizations of asteroid surface materials , 1979 .

[72]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[73]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[74]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[75]  H. Edwards,et al.  Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites , 2004 .

[76]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[77]  H. Kroll,et al.  Time and temperature variation of the intracrystalline Fe2+,Mg fractionation in Johnstown meteoritic orthopyroxene , 2000 .

[78]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[79]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[80]  A. Jambon,et al.  Oxygen Isotope Variation in Stony-Iron Meteorites , 2006, Science.

[81]  M. Darby Dyar,et al.  Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .

[82]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[83]  Michael J. Gaffey,et al.  Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies , 2010 .

[84]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[85]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[86]  Fernando Roig,et al.  Reanalysis of asteroid families structure through visible spectroscopy , 2005 .

[87]  Donald R. Davis,et al.  From asteroid clusters to families: A proposal for a new nomenclature , 1992 .

[88]  J. Carvano,et al.  Spectroscopic Survey of the Hungaria and Phocaea Dynamical Groups , 2001 .

[89]  Richard P. Binzel,et al.  Forging asteroid-meteorite relationships through reflectance spectroscopy , 2000 .

[90]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .