Continuous pulse advances in the negative ion source NIO1
暂无分享,去创建一个
B. Zaniol | M. Barbisan | R. Delogu | A. Pimazzoni | R. Agnello | M. Cavenago | R. Milazzo | L. Franchin | F. Rossetto | P. Barbato | F. Molon | C. Poggi | L. Trevisan | M. Ugoletti | B. Laterza | L. Migliorato | D. Ravarotto | R. Rizzieri | M. Maniero | G. Passalacqua | S. Zucchetti | L. Romanato | L. Baseggio | L. Balconi | A. Castagni | B. Duteil
[1] M. Barbisan,et al. Cs Evaporation in a Negative Ion Source and Cs Cleaning Tests by Plasma Sputtering , 2022, IEEE Transactions on Plasma Science.
[2] T. Franke,et al. Status and future development of Heating and Current Drive for the EU DEMO , 2022, Fusion Engineering and Design.
[3] R. Zagórski,et al. First operations with caesium of the negative ion source SPIDER , 2022, Nuclear Fusion.
[4] V. Antoni,et al. The H multiaperture source NIO1: gas conditioning and first cesiations , 2022, Journal of Physics: Conference Series.
[5] G. Serianni,et al. SPIDER Cs Ovens functional tests , 2021 .
[6] S. Cristofaro,et al. Correlation of Cs flux and work function of a converter surface during long plasma exposure for negative ion sources in view of ITER , 2020, Plasma Research Express.
[7] P. Sonato,et al. First operation in SPIDER and the path to complete MITICA. , 2020, The Review of scientific instruments.
[8] V. Antoni,et al. Beam and installation improvements of the NIO1 ion source. , 2020, Review of Scientific Instruments.
[9] D. Aprile,et al. Experimental experience and improvement of NIO1 H− ion source , 2019, Fusion Engineering and Design.
[10] B. Heinemann,et al. Advanced NBI beam characterization capabilities at the recently improved test facility BATMAN Upgrade , 2019, Fusion Engineering and Design.
[11] B. Heinemann,et al. Achievement of ITER-relevant accelerated negative hydrogen ion current densities over 1000 s at the ELISE test facility , 2019, Nuclear Fusion.
[12] G. Serianni,et al. Analytical study of caesium-wall interaction parameters within a hydrogen plasma , 2018 .
[13] V. Antoni,et al. The NIO1 negative ion source: Investigation and operation experience , 2018 .
[14] M. Yoshida,et al. Evaluation of the temperature dependence of the cesium deposition on the plasma grid in the JT-60SA negative ion source , 2018 .
[15] U. Fantz,et al. Influence of H2 and D2 plasmas on the work function of caesiated materials , 2017 .
[16] F. Molon,et al. Improvements of the versatile multiaperture negative ion source NIO1 , 2017 .
[17] M. Bacal,et al. Negative hydrogen ion production mechanisms , 2015 .
[18] C. Wimmer,et al. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy , 2011 .
[19] C. Martens,et al. Overview of the RF source development programme at IPP Garching , 2006 .
[20] O. Kaneko,et al. Experiments on the multiampere negative ion source in National Institute for Fusion Science , 1992 .
[21] A. Forrester,et al. Large Ion Beams: Fundamentals of Generation and Propagation , 1988 .
[22] Lewi Tonks,et al. A General Theory of the Plasma of an Arc , 1929 .