Efficient Positivity Test Algorithms for Parametric and Nonparametric Sequences of Covariance Estimates

In statistical signal processing problems involving second-order information of data such as covariance estimation, spectral factorization, and optimal filtering, one often needs to test positivity of a real sequence obtained from the finite length of data as covariance estimates. In this correspondence, we present efficient time-domain algorithms for testing nonnegativity of real finite nonparametric and linearly parametric sequences as valid covariance estimates. For a parametric sequence, the algorithm searches entire parameter space to find a unique set of parameters for which the sequence is positive-definite. Examples show performance of the proposed algorithms versus direct use of DFT/FFT.

[1]  Alkiviadis G. Akritas,et al.  An implementation of Vincent's theorem , 1980 .

[2]  J. Cadzow,et al.  Sequences with positive semidefinite Fourier transforms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[3]  Vikram Sharma Complexity of real root isolation using continued fractions , 2007, ISSAC '07.

[4]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.

[5]  Theodore A. Bickart,et al.  Real polynomials: Nonnegativity and positivity , 1978 .

[6]  Ezra Zeheb,et al.  Sign test of multivariable real polynomials , 1980 .

[7]  I. Panahi,et al.  A Class of Quadratic FIR Filters with Applications to Spectral Shaping and Narrow Band Generation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[8]  N.K. Bose,et al.  A multivariable polynomial nonnegativity test , 1976, Proceedings of the IEEE.

[9]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[10]  E. Jury,et al.  Inner algorithm to test for positive definiteness of arbitrary binary forms , 1975 .

[11]  Fei Wang,et al.  Comments on "Explicit criterion for the positive definiteness of a general quartic form" , 2005, IEEE Trans. Autom. Control..

[12]  W. Burnside,et al.  Theory of equations , 1886 .

[13]  D. Siljak Algebraic criteria for positive realness relative to the unit circle , 1973 .

[14]  I. Panahi,et al.  An efficient finite positivity test algorithm for statistical signal processing applications , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.