Sudoku-like arrays, codes and orthogonality
暂无分享,去创建一个
[1] Peter J. Cameron,et al. Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codes , 2008, Am. Math. Mon..
[2] J. M. Chao,et al. Classical arcs in PG(r, q) for 23 leq q leq 29 , 2001, Discret. Math..
[3] Tuvi Etzion,et al. Intersection of Isomorphic Linear Codes , 1997, J. Comb. Theory, Ser. A.
[4] Ute Rosenbaum,et al. Projective Geometry: From Foundations to Applications , 1998 .
[5] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[6] D. Nott,et al. A simple approach to constructing quasi-Sudoku-based sliced space-filling designs , 2015, 1502.05522.
[7] Brett Stevens,et al. Sets of orthogonal hypercubes of class r , 2012, J. Comb. Theory, Ser. A.
[8] Daniel Panario,et al. Efficient pth root computations in finite fields of characteristic p , 2009, Des. Codes Cryptogr..
[9] K. Mark Lawrence,et al. A combinatorial characterization of (t,m,s)-nets in baseb , 1996 .
[10] J. M. Chao,et al. Classical arcs in PG(r, q) for 11 <= q <= 19 , 1997, Discret. Math..
[11] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[12] T. M. Tovstik. Calculation of the discrepancy of a finite set of points in the unit n-cube , 2007 .
[13] Geoff Whittle,et al. Point sets with uniformity properties and orthogonal hypercubes , 1992 .