Polynomial Interpolation and Identity Testing from High Powers Over Finite Fields

We consider the problem of recovering (that is, interpolating) and identity testing of a “hidden” monic polynomial f, given an oracle access to $${f}{(x)}^e$$f(x)e for $$x\in \mathbb {F}_q$$x∈Fq, where $$\mathbb {F}_q$$Fq is finite field of q elements (extension fields access is not permitted). The naive interpolation algorithm needs $$O(e \deg f)$$O(edegf) queries and thus requires $$e\deg f<q$$edegf<q. We design algorithms that are asymptotically better in certain cases; requiring only $$e^{o(1)}$$eo(1) queries to the oracle. In the randomized (and quantum) setting, we give a substantially better interpolation algorithm, that requires only $$O(\deg f \log q)$$O(degflogq) queries. Such results have been known before only for the special case of a linear f, called the hidden shifted power problem. We use techniques from algebra, such as effective versions of Hilbert’s Nullstellensatz, and analytic number theory, such as results on the distribution of rational functions in subgroups and character sum estimates.

[1]  Wim van Dam,et al.  Quantum Algorithms for Weighing Matrices and Quadratic Residues , 2000, Algorithmica.

[2]  Alexander Russell,et al.  Classical and quantum function reconstruction via character evaluation , 2004, J. Complex..

[3]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[4]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.

[5]  Mei-Chu Chang,et al.  Factorization in generalized arithmetic progressions and application to the Erdős-Szemerédi sum-product problems , 2003 .

[6]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[7]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[8]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[9]  Nitin Saxena,et al.  Progress on Polynomial Identity Testing , 2009, Bull. EATCS.

[10]  Nitin Saxena,et al.  Progress on Polynomial Identity Testing - II , 2014, Electron. Colloquium Comput. Complex..

[11]  Carlos D'Andrea,et al.  Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.

[12]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[13]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[14]  Igor E. Shparlinski,et al.  Concentration of points on curves in finite fields , 2013 .

[15]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[16]  Igor E. Shparlinski,et al.  Products with variables from low-dimensional affine spaces and shifted power identity testing in finite fields , 2014, J. Symb. Comput..

[17]  Igor E. Shparlinski,et al.  Polynomial Values in Small Subgroups of Finite Fields , 2014, 1401.0964.

[18]  Igor E. Shparlinski,et al.  On the Hidden Shifted Power Problem , 2011, SIAM J. Comput..

[19]  Gary L. Miller,et al.  On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[20]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[21]  Ivan Damgård,et al.  On the Randomness of Legendre and Jacobi Sequences , 1990, CRYPTO.

[22]  Igor E. Shparlinski,et al.  Product Sets of Rationals, Multiplicative Translates of Subgroups in Residue Rings, and Fixed Points of the Discrete Logarithm , 2010 .

[23]  Igor E. Shparlinski,et al.  Subgroups generated by rational functions in finite fields , 2013, 1309.7378.

[24]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[25]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[26]  Richard J. Lipton,et al.  Algorithms for Black-Box Fields and their Application to Cryptography (Extended Abstract) , 1996, CRYPTO.

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..