ROSENTHAL-TYPE INEQUALITIES FOR MARTINGALES IN 2-SMOOTH BANACH SPACES ∗

Certain previously known upper bounds on the moments of the norm of martingales in 2-smooth Banach spaces are improved. Some of these improvements hold even for sums of independent real-valued random variables. Applications to concentration of measure on product spaces for separately Lipschitz functions are presented, including ones concerning the central moments of the norm of the sums of independent random vectors in any separable Banach space.

[1]  I. Pinelis Exact Rosenthal-type inequalities for p=3, and related results , 2013, 1302.6524.

[2]  I. Pinelis Optimal re-centering bounds, with applications to Rosenthal-type concentration of measure inequalities , 2011, 1111.2622.

[3]  Lutz Dümbgen,et al.  Nemirovski's Inequalities Revisited , 2008, Am. Math. Mon..

[4]  I. Pinelis,et al.  Optimal-order bounds on the rate of convergence to normality in the multivariate delta method , 2009, 0906.0177.

[5]  I. Pinelis,et al.  Berry-Esseen bounds for general nonlinear statistics, with applications to Pearson's and non-central Student's and Hotelling's , 2009 .

[6]  V. Bentkus On measure concentration for separately Lipschitz functions in product spaces , 2007 .

[7]  Michel Ledoux,et al.  On measure concentration of vector-valued maps , 2007 .

[8]  I. Pinelis On normal domination of (super)martingales , 2005, math/0512382.

[9]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[10]  Serguei Novak,et al.  On self-normalized sums and student's statistic , 2005 .

[11]  Louis H. Y. Chen,et al.  Stein's method for normal approximation , 2005 .

[12]  Rustam Ibragimov,et al.  ON EXTREMAL PROBLEMS AND BEST CONSTANTS IN MOMENT INEQUALITIES , 2002 .

[13]  M. Ledoux The concentration of measure phenomenon , 2001 .

[14]  J. Zinn,et al.  Exponential and Moment Inequalities for U-Statistics , 2000, math/0003228.

[15]  R. Latala,et al.  Between Sobolev and Poincaré , 2000, math/0003043.

[16]  R. Ibragimov,et al.  Short Communications: On an Exact Constant for the Rosenthal Inequality , 1998 .

[17]  R. Latala Estimation of moments of sums of independent real random variables , 1997 .

[18]  Руслан Шавкатович Ибрагимов,et al.  О точной константе в неравенстве Розенталя@@@On an exact constant for the Rosenthal inequality , 1997 .

[19]  I. Pinelis OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.

[20]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[21]  I. Pinelis,et al.  Estimates of the Moments of Sums of Independent Random Variables , 1985 .

[22]  I. Pinelis Estimates of moments of infinite-dimensional martingales , 1980 .

[23]  Iosif Pinelis,et al.  Some Inequalities for the Distribution of Sums of Independent Random Variables , 1978 .

[24]  J. Kuelbs Probability on Banach spaces , 1978 .

[25]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[26]  V. V. Petrov Some Inequalities for the Distributions of Sums of Independent Random Variables , 1975 .

[27]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[28]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .