Estimability analysis of variance and covariance components

Although variance and covariance components have been extensively investigated and a number of elegant formulae to compute them have been derived, nothing is known, without any ambiguity, about their estimability in the case of a fully unknown variance–covariance matrix. We prove that variance and covariance components in this case are not estimable, thus clarifying the ambiguity of the literature on the topic and correcting some erroneous statements in the literature. We also give a new theorem on the estimability of a linear function of variance and covariance components. Then we propose a new method to estimate the variance–covariance matrix with special structure, which can presumably be represented by, at most, r(r + 1)/2 independent parameters to guarantee its estimability in such a subspace, by directly implementing the positive definiteness of the matrix as constraint to the restricted maximum likelihood method, where r is the number of redundant measurements. Therefore, our estimates of the variance and covariance components always reconstruct a positive definite matrix and are always physically meaningful.

[1]  George H. Ling,et al.  Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate , 1907 .

[2]  Ou Ziqiang,et al.  Estimation of variance and covariance components , 1989 .

[3]  C. R. Henderson ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS , 1953 .

[4]  P. Xu A general solution in geodetic nonlinear rank-defect models , 1997 .

[5]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[6]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[7]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[8]  Peiliang Xu,et al.  Variance Component Estimation in Linear Inverse Ill-posed Models , 2006 .

[9]  H. E. Daniels The Estimation of Components of Variance , 1939 .

[10]  E. Czuber,et al.  Theorie der Beobachtungsfehler , 1891 .

[11]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[12]  Friedrich Pukelsheim,et al.  Estimating variance components in linear models , 1976 .

[13]  S. R. Searle Linear Models , 1971 .

[14]  R. Pincus Estimability of parameters of the covarlance matrix and variance components , 1974 .

[15]  Burkhard Schaffrin,et al.  Best invariant covariance component estimators and its application to the generalize multivariate adjustment of heterogeneous deformation observations , 1981 .

[16]  Z. Yu,et al.  A universal formula of maximum likelihood estimation of variance-covariance components , 1996 .

[17]  Lynn Roy Lamotte,et al.  On Non-Negative Quadratic Unbiased Estimation of Variance Components , 1973 .

[18]  C. R. Rao,et al.  Estimation of variance and covariance components--MINQUE theory , 1971 .

[19]  K. Kubik,et al.  The estimation of the weights of measured quantities within the method of least squares , 1970 .

[20]  Charles J. Geyer,et al.  Estimation and testing in constrained covariance component models , 1997 .

[21]  Calyampudi R. Rao Estimation of Heteroscedastic Variances in Linear Models , 1970 .

[22]  H. Hartley,et al.  Maximum-likelihood estimation for the mixed analysis of variance model. , 1967, Biometrika.

[23]  Karl-Rudolf Koch,et al.  Maximum likelihood estimate of variance components , 1986 .

[24]  W. G. Cochran The Use of the Analysis of Variance in Enumeration by Sampling , 1939 .

[25]  E. Groeneveld A reparameterization to improve numerical optimization in multivariate REML (co)variance component estimation , 1994, Genetics Selection Evolution.

[26]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[27]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[28]  N. Crocetto,et al.  Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups , 2000 .

[29]  George Biddell Airy,et al.  On the Algebraical and Numerical Theory of Errors of Observations and the Combination of Observations , 2007 .

[30]  W. N. Venables,et al.  Estimation of Variance Components and Applications. , 1990 .

[31]  Lynn Roy LaMotte,et al.  Quadratic Estimation of Variance Components , 1973 .