A Simple Synthesis Method of Sulfur-Free Fe-N/C Catalyst with High ORR Activity

To try to deconvolute which factors affect the activity and durability of metal-nitrogen-carbon (M-N-C) type non-precious catalysts for oxygen reduction reaction (ORR), M-N-C catalysts based on ion chloride, polyaniline (PANI) and Ketjen Black carbon support were synthesized using different synthetic conditions. The catalysts were characterized electrochemically and tested as cathodes for Hydrogen fuel cells. PANI is usually chemically oxidative polymerized using ammonium persulfate (APS) as oxidant. To eliminate sulfur in the synthesized catalysts, a simple synthesis method using ion chloride as oxidant for aniline polymerization was developed. Two different aniline polymerization conditions led to very different product morphologies. Synthesized at low initial proton concentration, the final product was composed of dense micrometer sized particles. A decomposable salt was found to be able to prohibit PANI cross linking during the drying and annealing process and thus led to porous product. The porous catalyst has much higher ORR activity than the dense product due to more accessible active sites. Synthesized at high proton concentration, the catalyst appeared to be porous. The decomposable salt treatment did not make too much improvement in the porous structure and electrochemical activity. However, fuel cell testing using air as cathode feeder indicates that the salt treatment improvesmore » mass transfer in the cathode layer. Catalyst synthesized using this simple method has performance comparable to our state-of-the art catalyst synthesized in a much more complicated procedure. The factor that sulfur sources are completely eliminated in the synthesis suggests that sulfur is not necessary for the ORR catalysis activity.« less