Propagation of plasma beams across the magnetic field
暂无分享,去创建一个
1407_62Beams of charge- and current-neutralized plasma will cross a transverse-magnetic field by a combination of collective-plasma processes. These processes were studied for a high-to-low beta ((beta) equalsV plasma energy density/magnetic field energy density) hydrogen-plasma beam injected into a vacuum transverse magnetic field with nominal parameters: (Tau) i approximately equals 1 eV, (Tau) e approximately equals 5 eV, n 14 cm-3, vi 6 cm/s, tpulse < 70 microsecond(s) , (Beta) z (Rho (i)) (Rho (i)), where a is the beam radius, x is the downstream distance, and (Rho (i)) is the ion gyroradius. A brief state of initial diamagnetic propagation is observed, followed by a rapid transition to $Ex$B propagation. $Ex$B propagation is accompanied by beam compression transverse to $B with as much as a factor of four increase in density and a slight drift of the beam in the ion Lorentz force direction. As the magnetic field increases, the observed magnetization time decreases from that calculated using classical Spitzer conductivity, approaching an order of magnitude. This rapid magnetization can be accounted for using classical Hall conductivity, rather than invoking anomalous processes or instabilities to calculate the magnetization time.
[1] L. Rosenhead. Conduction of Heat in Solids , 1947, Nature.