Parallel Solution of Finite Element Equation Systems: Efficient Inter-Processor Communication

This paper deals with the application of domain decomposition methods for the parallel solution of boundary value problems for partial diierential equations over a domain I R d , d = 2; 3. The attention is focused on the conception of eecient communication routines for the data exchange which is necessary for example in the preconditioned cg-algorithm for solving the resulting system of algebraic equations. The paper describes the data structure, diierent algorithms, and computational tests.

[1]  Yousef Saad,et al.  Data Communication in Hypercubes , 1989, J. Parallel Distributed Comput..

[2]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[3]  M. Dryja,et al.  A finite element — Capacitance method for elliptic problems on regions partitioned into subregions , 1984 .

[4]  Sergej Rjasanow,et al.  A parallel version of the preconditioned conjugate gradient method for boundary element equations , 1995, Numer. Linear Algebra Appl..

[5]  Volker Mehrmann,et al.  LOCAL AND GLOBAL INVARIANTS OF LINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS AND THEIR RELATION , 1996 .

[6]  Alexander Punnoose,et al.  The Mott-Anderson transition in the disordered one-dimensional Hubbard model , 1997 .

[7]  Volker Mehrmann,et al.  GELDA: A software package for the solution of General Linear Differential Algebraic equations , 1995 .

[8]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[9]  M. Schreiber,et al.  Multifractal analysis of the metal-insulator transition in anisotropic systems , 1996, cond-mat/9609276.

[10]  Reinhold Schneider,et al.  Multiscale compression of BEM equations for electrostatic systems , 1996 .

[11]  Michael Schreiber,et al.  MONTE CARLO SIMULATIONS OF THE DYNAMICAL BEHAVIOR OF THE COULOMB GLASS , 1997 .

[12]  Sergej Rjasanow,et al.  A Parallel Preconditioned Iterative Realization of the Panel Method in 3D , 1996 .

[13]  Michael Schreiber,et al.  No enhancement of the localization length for two interacting particles in a random potential , 1996 .

[14]  Reinhold Schneider,et al.  On the creation of sparse boundary element matrices for two dimensional electrostatics problems using the orthogonal Haar wavelet , 1997 .