Electrical or Photocontrol of the Rotary Motion of a Metallacarborane

Rotary motion around a molecular axis has been controlled by simple electron transfer processes and by photoexcitation. The basis of the motion is intramolecular rotation of a carborane cage ligand (7,8-dicarbollide) around a nickel axle. The Ni(III) metallacarborane structure is a transoid sandwich with two pairs of carbon vertices reflected through a center of symmetry, but that of the Ni(IV) species is cisoid. The interconversion of the two provides the basis for controlled, rotational, oscillatory motion. The energies of the Ni(III) and Ni(IV) species are calculated as a function of the rotation angle.

[1]  Lyal B. Harris November , 1890, The Hospital.

[2]  J. Kendall Inorganic Chemistry , 1944, Nature.

[3]  Robert K. Bohn,et al.  On the molecular structure of ferrocene, Fe(C5H5)2 , 1966 .

[4]  M. Hawthorne,et al.  .pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs , 1968 .

[5]  M. Frederick Hawthorne,et al.  Chemistry of the bis[.pi.-(3)-1,2-dicarbollyl] metalates of nickel and palladium , 1970 .

[6]  M. Hawthorne,et al.  Determination of the electronic properties of carboranes, carborane anions, and metallocarboranes from fluorine-19 nuclear magnetic resonance studies , 1970 .

[7]  David H. Templeton,et al.  Crystal structure of 3,3'-commo-bis[undecahydro-1,2-dicarba-3-nickela-closo-dodecaborane], a nickel(IV) complex of the dicarbollide ion , 1970 .

[8]  M. Hawthorne,et al.  Metallocarboranes That Exhibit Novel Chemical Features , 1972, Science.

[9]  G. Stucky,et al.  The Crystal and Molecular Structure of Tetramethylammonium 3,3'-Commo-bis[1,2-dicarba-3-nickela-closo-dodecarborate](1-). , 1973 .

[10]  E. Heller,et al.  Simple aspects of Raman scattering , 1982 .

[11]  J. Zink,et al.  Unusual spectroscopic features in the emission and absorption spectra of single-crystal potassium tetrachloroplatinate(II) (K2[PtCl4]) caused by multiple-mode excited-state distortions , 1988 .

[12]  J. Zink,et al.  Quantitative evaluation of the relationships between excited-state geometry and the intensities of fundamentals, overtones, and combination bands in resonance Raman spectra , 1989 .

[13]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[14]  AC Tose Cell , 1993, Cell.

[15]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[16]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[17]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[18]  N. Turro,et al.  Advances in photochemistry , 1996 .

[19]  Christopher L. Brown,et al.  Recognition of Bipyridinium-Based Derivatives by Hydroquinone- and/or Dioxynaphthalene-Based Macrocyclic Polyethers: From Inclusion Complexes to the Self-Assembly of [2]Catenanes. , 1997, The Journal of organic chemistry.

[20]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[21]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[22]  N. Copeland,et al.  Direct interaction of microtubule- and actin-based transport motors , 1999, Nature.

[23]  T. Yanagida,et al.  Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. , 1999, Science.

[24]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[25]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[26]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[27]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[28]  J Fraser Stoddart,et al.  Working Supramolecular Machines Trapped in Glass and Mounted on a Film Surface. , 2001, Angewandte Chemie.

[29]  N. Yamazaki,et al.  Nad(p)(+)-nad(p)h models. 90. stereoselection controlled by electronic effect of a carbonyl group in oxidation of nad(p)h analog. , 2000, The Journal of organic chemistry.

[30]  Josef Michl,et al.  Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .