Photoactive molecules for applications in molecular imaging and cell biology.

Photoactive technology has proven successful for non-invasive regulation of biological activities and processes in living cells. With the light-directed generation of biomaterials or signals, mechanisms in cell biology can be investigated at the molecular level with spatial and temporal resolution. In this tutorial review, we aim to introduce the important applications of photoactive molecules for elucidating cell biology on aspects of protein engineering, fluorescence labelling, gene regulation and cell physiological functions.

[1]  Susan E. Cellitti,et al.  In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. , 2008, Journal of the American Chemical Society.

[2]  I. Dmochowski,et al.  Controlling RNA digestion by RNase H with a light-activated DNA hairpin. , 2006, Angewandte Chemie.

[3]  Samit Shah,et al.  Light-activated RNA interference. , 2005, Angewandte Chemie.

[4]  M. Yaffe,et al.  Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function , 2004, Nature Biotechnology.

[5]  Control of the Yeast Cell Cycle with a Photocleavable α‐Factor Analogue , 2006 .

[6]  W. Tan,et al.  Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe , 2009, Proceedings of the National Academy of Sciences.

[7]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[8]  H. Bayley,et al.  Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. , 2006, Journal of the American Chemical Society.

[9]  K. Johnsson,et al.  Caged Substrates for Protein Labeling and Immobilization , 2008, Chembiochem : a European journal of chemical biology.

[10]  Maurice Goeldner,et al.  Phototriggering of cell adhesion by caged cyclic RGD peptides. , 2008, Angewandte Chemie.

[11]  Wen-hong Li,et al.  LAMP, a new imaging assay of gap junctional communication unveils that Ca2+ influx inhibits cell coupling , 2005, Nature Methods.

[12]  H. Bayley,et al.  Caged Catalytic Subunit of cAMP-Dependent Protein Kinase , 1998 .

[13]  Steven G. Chaulk,et al.  Caged RNA: photo-control of a ribozyme reaction , 1998, Nucleic Acids Res..

[14]  A. MacMillan,et al.  Synthesis of oligo-RNAs with photocaged adenosine 2′-hydroxyls , 2007, Nature Protocols.

[15]  Julie A. Theriot,et al.  Actin microfilament dynamics in locomoting cells , 1991, Nature.

[16]  Samit Shah,et al.  Light-activated RNA interference using double-stranded siRNA precursors modified using a remarkable regiospecificity of diazo-based photolabile groups , 2009, Nucleic acids research.

[17]  A. Deiters,et al.  Photochemical Regulation of Restriction Endonuclease Activity , 2009, Chembiochem : a European journal of chemical biology.

[18]  Peter G Schultz,et al.  Control of protein phosphorylation with a genetically encoded photocaged amino acid. , 2007, Nature chemical biology.

[19]  J. Alexander,et al.  Targeting Expression with Light Using Caged DNA* , 1999, The Journal of Biological Chemistry.

[20]  Ken Jacobson,et al.  Local Photorelease of Caged Thymosin β4 in Locomoting Keratocytes Causes Cell Turning , 2001, The Journal of cell biology.

[21]  S. Maegawa,et al.  Regulating gene expression in zebrafish embryos using light-activated, negatively charged peptide nucleic acids. , 2007, Journal of the American Chemical Society.

[22]  K. Gee,et al.  Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Surajit Sinha,et al.  Light-controlled gene silencing in zebrafish embryos. , 2007, Nature chemical biology.

[24]  N. Avlonitis,et al.  Caged AG10: new tools for spatially predefined mitochondrial uncoupling. , 2009, Molecular bioSystems.

[25]  M. Komiyama,et al.  Photoregulation of RNA digestion by RNase H with azobenzene-tethered DNA. , 2004, Journal of the American Chemical Society.

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  A. Bausch,et al.  Photoswitched cell adhesion on surfaces with RGD peptides. , 2005, Journal of the American Chemical Society.

[28]  Yunyan Xie,et al.  Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. , 2009, Angewandte Chemie.

[29]  K. Jalink,et al.  Direct measurement of cyclic AMP diffusion and signaling through connexin43 gap junctional channels. , 2007, Experimental cell research.

[30]  Jakob Wirz,et al.  Photoremovable protecting groups: reaction mechanisms and applications , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[31]  Michael E. Hahn,et al.  Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, through caging of activating phosphoserines. , 2004, Angewandte Chemie.

[32]  A. Deiters,et al.  A light-activated DNA polymerase. , 2009, Angewandte Chemie.

[33]  Roger Y. Tsien,et al.  Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos , 2001, Nature Genetics.

[34]  B. Winsor,et al.  Synthesis and photochemical properties of a light-activated fluorophore to label His-tagged proteins. , 2008, Chemical communications.

[35]  I. Sase,et al.  Regulation of nuclear import by light‐induced activation of caged nuclear localization signal in living cells , 2001, FEBS letters.

[36]  John S. Condeelis,et al.  Cofilin Promotes Actin Polymerization and Defines the Direction of Cell Motility , 2004, Science.

[37]  T. Muir,et al.  A ligation and photorelease strategy for the temporal and spatial control of protein function in living cells. , 2005, Angewandte Chemie.

[38]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[39]  Douglas D Young,et al.  Photochemical control of biological processes. , 2007, Organic & biomolecular chemistry.

[40]  G. Lajoie,et al.  Photo-control of nitric oxide synthase activity using a caged isoform specific inhibitor. , 2002, Bioorganic & medicinal chemistry.

[41]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[42]  I. Dmochowski,et al.  Regulating gene expression with light-activated oligonucleotides. , 2007, Molecular bioSystems.

[43]  Kazuo Yamaguchi,et al.  Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. , 2007, Journal of the American Chemical Society.

[44]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[45]  T. Cropp,et al.  Photochemical control of FlAsH labeling of proteins. , 2009, Bioorganic & medicinal chemistry letters.

[46]  Dirk Trauner,et al.  Photochromic blockers of voltage-gated potassium channels. , 2009, Angewandte Chemie.

[47]  T. Bonhoeffer,et al.  Doxycycline-dependent photoactivated gene expression in eukaryotic systems , 2009, Nature Methods.

[48]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[49]  D. Lawrence,et al.  Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. , 2008, Journal of the American Chemical Society.

[50]  R. Lin,et al.  Imaging dynamic cell-cell junctional coupling in vivo using Trojan-LAMP , 2008, Nature Methods.

[51]  David S Lawrence,et al.  Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. , 2009, ACS chemical biology.

[52]  S. Sortino,et al.  Amplified nitric oxide photorelease in DNA proximity. , 2008, Chemical communications.

[53]  Rafael Yuste,et al.  Stimulating neurons with light , 2002, Current Opinion in Neurobiology.

[54]  Daniel T Chiu,et al.  Spectrally tunable uncaging of biological stimuli from nanocapsules. , 2008, Chemical communications.

[55]  David Ogden,et al.  Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ , 2009, Journal of Neuroscience Methods.

[56]  H. Lusic,et al.  Gene Silencing in Mammalian Cells with Light‐Activated Antisense Agents , 2008, Chembiochem : a European journal of chemical biology.

[57]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[58]  Thomas A. Moore,et al.  Active transport of Ca2+ by an artificial photosynthetic membrane , 2002, Nature.

[59]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[60]  Zhen Cheng,et al.  Photoactivable bioluminescent probes for imaging luciferase activity. , 2009, Chemical communications.

[61]  A. Heckel,et al.  Photoinduced transcription by using temporarily mismatched caged oligonucleotides. , 2005, Angewandte Chemie.

[62]  H. Bayley,et al.  Catalytic subunit of protein kinase A caged at the activating phosphothreonine. , 2002, Journal of the American Chemical Society.

[63]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[64]  Kristi S. Anseth,et al.  Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties , 2009, Science.

[65]  S. Munck,et al.  Spatiotemporal properties of cytoplasmic cyclic AMP gradients can alter the turning behaviour of neuronal growth cones , 2004, The European journal of neuroscience.

[66]  Daniel T Chiu,et al.  Laser photolysis of dye-sensitized nanocapsules occurs via a photothermal pathway. , 2009, Journal of the American Chemical Society.

[67]  Ming Xian,et al.  Nitric oxide donors: chemical activities and biological applications. , 2002, Chemical reviews.

[68]  A. Deiters,et al.  Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. , 2009, ACS chemical biology.

[69]  M. Komiyama,et al.  Photoregulation of the DNA Polymerase Reaction by Oligonucleotides Bearing an Azobenzene , 2000 .

[70]  G. Ellis‐Davies Neurobiology with caged calcium. , 2008, Chemical reviews.

[71]  K. Nakayama,et al.  Design and synthesis of photochemically controllable caspase-3. , 2004, Angewandte Chemie.