Sub-0.2 dB Noise Figure Wideband Room-Temperature CMOS LNA With Non-50 $\Omega$ Signal-Source Impedance

This paper presents a wideband low-noise amplifier (LNA) designed to be used as the first stage of the receiver in the Square Kilometer Array radio telescope. The LNA design procedure and its layout features are discussed. The noise figure optimization procedure determines the signal-source resistance that results in reduced noise figure. When used in the radio telescope, the required signal-source resistance will be presented by the telescope custom-made antenna elements. The LNA, designed in 90 nm bulk CMOS, achieves sub-0.2 dB noise figure from 800 MHz to 1400 MHz, return loss of more than 11 dB, gain of more than 17 dB driven into a 50 load, output 1 dB compression point of 2 dBm, output IP3 of 12 dBm, and output IP2 of 22 dBm while consuming 43 mA from a 1 V supply. In the LNA implementation presented in this paper the load choke inductor and the source inductor are integrated whereas the gate-, bias-, and the choke-inductor between two transistors of the cascode are external. The noise figure of the presented LNA is to our knowledge the lowest noise figure achieved by a power matched wideband CMOS LNA at room temperature.

[1]  Andrew C. Davidson,et al.  Accuracy improvements in microwave noise parameter measurements , 1989 .

[2]  C. Yue,et al.  On-chip Spiral Inductors With Patterned Ground Shields For Si-based RF IC's , 1997, Symposium 1997 on VLSI Circuits.

[3]  K. Soumyanath,et al.  Measurement and modeling errors in noise parameters of scaled-CMOS devices , 2006, IEEE Transactions on Microwave Theory and Techniques.

[4]  R. Hu,et al.  Wide-band matched LNA design using transistor's intrinsic gate-drain capacitor , 2006, IEEE Transactions on Microwave Theory and Techniques.

[5]  Johan Janssens,et al.  MOS noise performance under impedance matching constraints , 1999 .

[6]  J. Colvin,et al.  Effects of substrate resistances on LNA performance and a bondpad structure for reducing the effects in a silicon bipolar technology , 1999 .

[7]  L.F. Tiemeijer,et al.  Improved Y-factor method for wide-band on-wafer noise-parameter measurements , 2005, IEEE Transactions on Microwave Theory and Techniques.

[8]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[9]  Leonid Belostotski,et al.  On Selection of Optimum Signal Source Impedance for Inductively-Degenerated CMOS LNAS , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[10]  Peter Russer,et al.  An efficient method for computer aided noise analysis of linear amplifier networks , 1976 .

[11]  J.R. Long,et al.  Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits , 2006, IEEE Journal of Solid-State Circuits.

[12]  B. Nauta,et al.  Achieving Wideband sub-1dB Noise Figure and High Gain with MOSFETs if Input Power Matching is not Required , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[13]  Leonid Belostotski,et al.  Wide-band CMOS low noise amplifier for applications in radio astronomy , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[14]  F. Schreuder,et al.  LOCALIZED LNA COOLING IN VACUUM , 2006 .

[15]  Leonid Belostotski,et al.  Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  P. J. Hall,et al.  The Square Kilometre Array: An International Engineering Perspective , 2004 .

[17]  Ali M. Niknejad,et al.  Low-Power mm-Wave Components up to 104GHz in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[18]  Robert Hu,et al.  Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design , 2005 .

[19]  David K. Walker,et al.  Systematic errors of noise parameter determination caused by imperfect source impedance measurement , 2005, IEEE Transactions on Instrumentation and Measurement.

[20]  Arthur Uhlir,et al.  A Novel Procedure for Receiver Noise Characterization , 1973 .

[21]  E.E.M. Woestenburg,et al.  DESIGN AND CHARACTERISATION OF A LOW NOISE ACTIVE ANTENNA (LNAA) FOR SKA , 2000 .

[22]  Ronald van Langevelde,et al.  Compact modeling of noise in CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[23]  Wouter A. Serdijn,et al.  GaAs 0.5 dB NF dual-loop negative-feedback broadband low-noise amplifier IC , 2005 .

[24]  L. Belostotski,et al.  Wide Band Room Temperature 0.35-dB Noise Figure LNA in 90-nm Bulk CMOS , 2007, 2007 IEEE Radio and Wireless Symposium.

[25]  H. Rothe,et al.  The theory of noisy four-poles , 1954, Transactions of the IRE Professional Group on Electron Devices.

[26]  R. Hu An 8-20-GHz wide-band LNA design and the analysis of its input matching mechanism , 2004, IEEE Microwave and Wireless Components Letters.

[27]  R. Q. Lane,et al.  The determination of device noise parameters , 1969 .

[28]  H. A. Haus,et al.  Representation of Noise in Linear Twoports , 1960, Proceedings of the IRE.

[29]  J.G. Bij de Vaate,et al.  Decade Wide Bandwidth Integrated Very Low Noise Amplifier , 2000, 2000 30th European Microwave Conference.