AERONET observations of direct and indirect aerosol effects over a South European conurbation

Sun photometer measurements over the Thessaloniki AErosol RObotic NETwork (AERONET) site were conducted during 2005–2007 and provide a method for determining the temporal variability of aerosol optical properties. Monthly mean aerosol optical thickness (AOT) showed higher values during the warmer months and lower values during the colder months. The single scattering albedo (SSA) and also the imaginary part of the refractive index (k) indicate more absorbing particles during autumn/winter than summer/spring. Aerosol direct radiative forcing measurements are also presented. The monthly change in aerosol radiative forcing was examined at the top of the atmosphere (TOA; from −8.0 to −28.0 W m−2), at the bottom of the atmosphere (BOA; from −19.0 to −55.0 W m−2) and within the atmosphere (ATM; from 11.0 to 35.0 W m−2); the ATM is affected by both the SSA and k. We also investigated the interaction between aerosol optical properties over Thessaloniki and cloud parameters over a region of the Northern Aegean. For the autumn and spring mean monthly values, high correlation coefficients were found between AOT and cloud fraction, the SSA and cloud fraction, AOT and cloud condensation nuclei per square centimetre (CCN/cm2), and cloud optical depth and AOT, and finally a negative correlation was found between AOT and cloud effective radius.

[1]  S. Rapsomanikis,et al.  Optical properties of aerosol over a South European urban environment , 2012 .

[2]  London Economies The Impact of Three , 2012 .

[3]  M. Perrone,et al.  Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties , 2008 .

[4]  Oleg Dubovik,et al.  Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground‐based broadband measurements , 2008 .

[5]  Jean-Claude Roger,et al.  One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing , 2008 .

[6]  I. Vardavas,et al.  Assessment of the MODIS Collections C005 and C004 aerosol optical depth products over the Mediterranean basin , 2008 .

[7]  M. M. Abdel Wahab,et al.  Aerosol characteristics over urban Cairo: Seasonal variations as retrieved from Sun photometer measurements , 2008 .

[8]  Tianle Yuan,et al.  Increase of cloud droplet size with aerosol optical depth: An observation and modeling study , 2008 .

[9]  김종환,et al.  aerosol optical properties , 2008 .

[10]  M. Perrone,et al.  Advection patterns and aerosol optical and microphysical properties by AERONET over south-east Italy in the central Mediterranean , 2007 .

[11]  A. Bais,et al.  Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece , 2007 .

[12]  Mihalis Vrekoussis,et al.  Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements , 2007 .

[13]  D. Hatzidimitriou,et al.  Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data , 2006 .

[14]  J. Smolík,et al.  Optical properties of aerosols over the eastern Mediterranean , 2006 .

[15]  Yoram J. Kaufman,et al.  Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models , 2006 .

[16]  T. Eck,et al.  Classification of aerosol properties derived from AERONET direct sun data , 2006 .

[17]  T. Storelvmo,et al.  Combined observational and modeling based study of the aerosol indirect effect , 2006 .

[18]  E. Vermote,et al.  A synergetic approach for estimating the local direct aerosol forcing : Application to an urban zone during the Expérience sur site pour contraindre les Modèles de pollution et de transport d'Emission (ESCOMPTE) experiment , 2006 .

[19]  Steven Platnick,et al.  Impact of three‐dimensional radiative effects on satellite retrievals of cloud droplet sizes , 2006 .

[20]  A. Nenes,et al.  CCN predictions: Is theory sufficient for assessments of the indirect effect? , 2006 .

[21]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[22]  Daniela Meloni,et al.  Forest fire aerosol over the Mediterranean basin during summer 2003 , 2005 .

[23]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[24]  Daniela Meloni,et al.  Aerosol optical properties at Lampedusa ( Central Mediterranean ) . 2 . Determination of single scattering albedo at two wavelengths for different aerosol types , 2017 .

[25]  Daniela Meloni,et al.  Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types , 2005 .

[26]  B. Holben,et al.  Aerosol load characterization over South–East Italy for one year of AERONET sun-photometer measurements , 2005 .

[27]  A. Bais,et al.  Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements , 2005 .

[28]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[29]  C. Zerefos,et al.  Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece , 2004 .

[30]  G. Socher A global satellite view of aerosol cloud interactions , 2004 .

[31]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[32]  P. Formenti,et al.  Climatological aspects of aerosol optical properties in Northern Greece , 2003 .

[33]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[34]  Giorgio Fiocco,et al.  Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements , 2003 .

[35]  M. Wendisch,et al.  STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea: 2. Aerosol scattering and absorption, and radiative calculations , 2002 .

[36]  M. Wendisch,et al.  STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea: 1. Aerosol particles and trace gases , 2002 .

[37]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory , 2002 .

[38]  J. Penner,et al.  Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations , 2002 .

[39]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[40]  B. Holben,et al.  Remote sensing of non‐aerosol absorption in cloud free atmosphere , 2002 .

[41]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[42]  Arnon Karnieli,et al.  Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel , 2002 .

[43]  J. Seinfeld,et al.  Black carbon radiative heating effects on cloud microphysics and implications for aerosol indirect forcing : 1 . Extended Köhler theory , 2002 .

[44]  B. Holben,et al.  Baseline maritime aerosol: Methodology to Derive the optical thickness and scattering properties , 2001 .

[45]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[46]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[47]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[48]  Christos Zerefos,et al.  On the origin of SO2 above northern Greece , 2000 .

[49]  Christos Zerefos,et al.  Tropospheric LIDAR aerosol measurements and sun photometric observations at Thessaloniki, Greece , 2000 .

[50]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements , 1999 .

[51]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds , 1998 .

[52]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[53]  Oleg Dubovik,et al.  Improved technique for data inversion and its application to the retrieval algorithm for ADEOS/ILAS , 1998 .

[54]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[55]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[56]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[57]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[58]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[59]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .