Limit analysis theorems for implicit standard materials: Application to the unilateral contact with dry friction and the non-associated flow rules in soils and rocks

A new class of materials called Implicit Standard Materials was proposed in a previous work. It allows one to generalize Fenchel's inequality and then to recover flow rule normality for non-standard behaviours, in particular for soils and unilateral contact with dry friction. In this work an extension of the limit analysis theorems to this news class of materials is presented. Some relevant features are pointed out, such as non-uniqueness of the limit load and coupling of the lower and upper bound problems. Some analytical and numerical solutions are presented to illustrate the theory.

[1]  A. R. Jumikis,et al.  Mechanics of Soils , 1964 .

[2]  Wai-Fah Chen,et al.  BEARING CAPACITY DETERMINATION BY LIMIT ANALYSIS , 1973 .

[3]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[4]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[5]  V. V. Sokolovskii,et al.  Statics of Granular Media , 1965 .

[6]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[7]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[8]  Andrew Palmer,et al.  A limit theorem for materials with non-associated flow laws , 1966 .

[9]  P S Symonds,et al.  THE RAPID CALCULATION OF THE PLASTIC COLLAPSE LOAD FOR A FRAMED STRUCTURE. , 1952 .

[10]  W. Fenchel On Conjugate Convex Functions , 1949, Canadian Journal of Mathematics.

[11]  Donald W. Taylor,et al.  Fundamentals of soil mechanics , 1948 .

[12]  D. C. Drucker Limit analysis of two and three dimensional soil mechanics problems , 1953 .

[13]  R. T. Shield,et al.  On Coulomb's law of failure in soils , 1955 .

[14]  R. Hill The mathematical theory of plasticity , 1950 .

[15]  Nonuniqueness of collapse load for a frictional material , 1970 .

[16]  Zbigniew Mróz,et al.  Mathematical models of inelastic material behaviour , 1973 .

[17]  Pieter A. Vermeer,et al.  Automatic step size correction for non-associated plasticity problems , 1990 .

[18]  W. Prager,et al.  Theory of perfectly plastic solids , 1968 .

[19]  G. De Saxce,et al.  Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives , 1992 .

[20]  Charles Massonnet,et al.  Plastic analysis and design of plates, shells and disks , 1972 .

[21]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[22]  Aris Phillips,et al.  Plastic Analysis of Structures , 1959 .

[23]  J. Dais An isotropic frictional theory for a granular medium with or without cohesion , 1970 .

[24]  P. Germain Mécanique des milieux continus , 1962 .

[25]  Wai-Fah Chen Limit Analysis and Soil Plasticity , 1975 .

[26]  G. de Josselin de Jong,et al.  Lower Bound Collapse Theorem and Lack of Normality of Strainrate to Yield Surface for Soils , 1966 .

[27]  Wai-Fah Chen,et al.  Limit analysis in soil mechanics , 1990 .

[28]  H. Ziegler,et al.  A Possible Generalization of Onsager’s Theory , 1968 .

[29]  Rodney Hill,et al.  A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY , 1948 .

[30]  B. G. Neal,et al.  Recent progress in the plastic methods of structural analysis , 1951 .

[31]  B. Neal Plastic Methods of Structural Analysis , 1963 .