Functional bold MRI: advantages of the 3 T vs. the 1.5 T.

We quantitatively evaluate the benefits of a higher field strength for functional brain MRI (fMRI) based on the blood oxygenation level-dependent contrast. The 3-T fMRI shows a higher sensitivity for the motor and somatosensory stimulation and more specific localization in the grey substance. The 3-T fMRI detects additional areas of activation with the motor paradigm.

[1]  Karl J. Friston,et al.  The slice-timing problem in event-related fMRI , 1999 .

[2]  Stefan Sunaert,et al.  Presurgical planning for tumor resectioning , 2006, Journal of magnetic resonance imaging : JMRI.

[3]  Gary H. Glover,et al.  Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing , 2003, NeuroImage.

[4]  R. Turner,et al.  Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI , 1993, Magnetic resonance in medicine.

[5]  J. Duyn,et al.  EPI‐BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: Sensitivity dependence on echo time and acquisition bandwidth , 2004, Journal of magnetic resonance imaging : JMRI.

[6]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jeff H. Duyn,et al.  Comparison of 3D BOLD Functional MRI with Spiral Acquisition at 1.5 and 4.0 T , 1999, NeuroImage.

[8]  M. L. Lauzon,et al.  Magnetic Resonance Imaging at 3.0 Tesla: Challenges and Advantages in Clinical Neurological Imaging , 2003, Investigative radiology.

[9]  G. Glover,et al.  Neuroimaging at 1.5 T and 3.0 T: Comparison of oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[10]  O Josephs,et al.  Event-related functional magnetic resonance imaging: modelling, inference and optimization. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[12]  B. Rosen,et al.  MR Contrast Due to Microscopically Heterogeneous Magnetic Susceptibility: Numerical Simulations and Applications to Cerebral Physiology , 1991, Magnetic resonance in medicine.

[13]  R. Seurinck,et al.  Comparison Between Functional Magnetic Resonance Imaging at 1.5 and 3 Tesla: Effect of Increased Field Strength on 4 Paradigms Used During Presurgical Work-up , 2007, Investigative radiology.

[14]  Bruce D. McCandliss,et al.  Functional MR imaging at 3.0 T versus 1.5 T: a practical review. , 2006, Neuroimaging clinics of North America.

[15]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[16]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[17]  Functional BOLD MRI: comparison of different field strengths in a motor task , 2008, European Radiology.

[18]  Lukas Scheef,et al.  Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging? , 2005, Radiology.

[20]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[21]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.