Gigahertz integrated circuits based on carbon nanotube films

[1]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[2]  Jianshi Tang,et al.  High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. , 2017, Nature nanotechnology.

[3]  Jerry Tersoff,et al.  Carbon nanotube transistors scaled to a 40-nanometer footprint , 2017, Science.

[4]  Li Ding,et al.  High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. , 2017, ACS nano.

[5]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[6]  Gerald J. Brady,et al.  Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs , 2016, Science Advances.

[7]  Lianmao Peng,et al.  Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. , 2016, Nano letters.

[8]  Michael S. Arnold,et al.  Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. , 2016, ACS nano.

[9]  Chongwu Zhou,et al.  High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes , 2016 .

[10]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[11]  C. Kim,et al.  Solution-processed carbon nanotube thin-film complementary static random access memory. , 2015, Nature nanotechnology.

[12]  Eric Pop,et al.  Scaling of graphene integrated circuits. , 2015, Nanoscale.

[13]  H. Wong,et al.  A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization , 2015, IEEE Transactions on Electron Devices.

[14]  Lianmao Peng,et al.  Transient response of carbon nanotube integrated circuits , 2015, Nano Research.

[15]  Subhasish Mitra,et al.  High-performance carbon nanotube field-effect transistors , 2014, 2014 IEEE International Electron Devices Meeting.

[16]  W. Haensch,et al.  Toward high-performance digital logic technology with carbon nanotubes. , 2014, ACS nano.

[17]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[18]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[19]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[20]  Yu Cao,et al.  Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors , 2014, Nature Communications.

[21]  Ananth Dodabalapur,et al.  High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. , 2014, Nano letters.

[22]  Hai Wei,et al.  Carbon nanotube circuit integration up to sub-20 nm channel lengths. , 2014, ACS nano.

[23]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[24]  E. Pop,et al.  Gigahertz integrated graphene ring oscillators. , 2013, ACS nano.

[25]  John A Rogers,et al.  Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. , 2013, Nature nanotechnology.

[26]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[27]  Paolo Lugli,et al.  Science and Engineering Beyond Moore's Law , 2012, Proceedings of the IEEE.

[28]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[29]  Zhenan Bao,et al.  Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. , 2011, Nature communications.

[30]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[31]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[32]  Chongwu Zhou,et al.  Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.

[33]  J. Rogers,et al.  Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors , 2009 .

[34]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[35]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[36]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[37]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[38]  John A. Rogers,et al.  p-Channel, n-Channel Thin Film Transistors and p−n Diodes Based on Single Wall Carbon Nanotube Networks , 2004 .

[39]  P. Bai,et al.  A high performance 180 nm generation logic technology , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).