Multi‐proxy constraints on the significance of covariant δ13C values in carbonate and organic carbon during the early Mississippian

This study investigates the covariation between carbonate and organic δ13C values in a proximal to distal transect of four outcrops in the Madison Limestone in the Western United States Rockies, combined with δ34S values of carbonate associated sulphate, the concentration of acid‐insoluble material and measurements of total organic carbon. These new geochemical datasets not only allow for an evaluation of carbon isotope covariance during one of the largest perturbations to the global carbon cycle over the past 550 Myr, but also constrain the cause of the excursion in carbonate δ13C values. The results support the hypothesis that a period of anoxia did not play a role in generating the positive carbonate δ13C values, but rather favour interpretations by previous workers that the proliferation of land plants destabilized the Carboniferous carbon cycle, setting the stage for a significant change in the carbonate δ13C values of contemporaneous marine carbonates. These results also demonstrate that one of the largest perturbations to the global carbon cycle did not produce synchronous variations in carbonate and organic δ13C values, emphasizing the importance of local depositional controls on carbon isotope covariance in the geological record in both modern and ancient environments.

[1]  J. Marshall,et al.  Early Mississippian evaporites of coastal tropical wetlands , 2018 .

[2]  P. Swart,et al.  Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis , 2018 .

[3]  H. Strauss,et al.  Diagenesis of carbonate associated sulfate , 2017 .

[4]  G. Escarguel,et al.  Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin , 2017 .

[5]  S. Olaussen,et al.  High-resolution organic carbon–isotope stratigraphy of the Middle Jurassic–Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard , 2016 .

[6]  Xiaoying Shi,et al.  Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China , 2016 .

[7]  P. Swart,et al.  Interpreting carbonate and organic carbon isotope covariance in the sedimentary record , 2014, Nature Communications.

[8]  T. Frank,et al.  Stable-isotope chemostratigraphy as a tool to correlate complex Mississippian marine carbonate facies of the Anadarko shelf, Oklahoma and Kansas , 2014 .

[9]  J. Grotzinger,et al.  Carbon isotopes and lipid biomarkers from organic‐rich facies of the Shuram Formation, Sultanate of Oman , 2013, Geobiology.

[10]  David S. Jones,et al.  Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S , 2013 .

[11]  D. Canfield,et al.  Carbon Cycle Makeover , 2013, Science.

[12]  D. Schrag,et al.  Uncovering the Neoproterozoic carbon cycle , 2012, Nature.

[13]  J. Reijmer,et al.  The stable carbon isotopic composition of organic material in platform derived sediments: implications for reconstructing the global carbon cycle , 2012 .

[14]  J. Payne,et al.  δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction , 2011 .

[15]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[16]  D. Lehrmann,et al.  Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records , 2010 .

[17]  L. Kump,et al.  Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction , 2010 .

[18]  C. Korte,et al.  Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review , 2010 .

[19]  G. Stuart,et al.  Melt‐induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves , 2010 .

[20]  A. Maloof,et al.  Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling , 2010, Science.

[21]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[22]  J. Besse,et al.  A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C , 2009 .

[23]  M. Leng,et al.  Isotopic signals from Callovian–Kimmeridgian (Middle–Upper Jurassic) belemnites and bulk organic carbon, Staffin Bay, Isle of Skye, Scotland , 2009, Journal of the Geological Society.

[24]  H. Sheets,et al.  Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation , 2009 .

[25]  Stefan Schouten,et al.  Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain) , 2008 .

[26]  Chen Xu,et al.  Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change , 2008 .

[27]  T. Lyons,et al.  Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy , 2008 .

[28]  P. Swart Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle , 2008, Proceedings of the National Academy of Sciences.

[29]  T. Lyons,et al.  Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir , 2007 .

[30]  G. Eberli,et al.  Timing and local perturbations to the carbon pool in the lower Mississippian Madison Limestone, Montana and Wyoming , 2007 .

[31]  B. Cramer,et al.  Early Silurian paired δ13Ccarb and δ13Corg analyses from the Midcontinent of North America: Implications for paleoceanography and paleoclimate , 2007 .

[32]  H. Strauss,et al.  The land plant δ13C record and plant evolution in the Late Palaeozoic , 2006 .

[33]  M. Leng,et al.  A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material , 2006 .

[34]  B. Toman,et al.  New Guidelines for δ13C Measurements , 2006 .

[35]  A. Igamberdiev,et al.  Land plants equilibrate O2 and CO2 concentrations in the atmosphere , 2006, Photosynthesis Research.

[36]  G. Eberli,et al.  The nature of the δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle , 2005 .

[37]  S. Bernasconi,et al.  Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record , 2005 .

[38]  C. Cleal,et al.  Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? , 2005 .

[39]  D. Hollander,et al.  Balancing supply and demand: controls on carbon isotope fractionation in the Cariaco Basin (Venezuela) Younger Dryas to present , 2004 .

[40]  M. Saltzman,et al.  Carbon cycle models based on extreme changes in δ13C: an example from the lower Mississippian , 2004 .

[41]  G. Grammer,et al.  Integration of Outcrop and Modern Analogs in Reservoir Modeling , 2004 .

[42]  James G. Ogg,et al.  A new Geologic Time Scale, with special reference to Precambrian and Neogene , 2004 .

[43]  Hildegard Westphal,et al.  Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming , 2004 .

[44]  D. Schrag,et al.  Oxygen Isotope Constraints on the Sulfur Cycle over the Past 10 Million Years , 2004, Science.

[45]  D. Lehrmann,et al.  Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China , 2004 .

[46]  M. Saltzman Organic Carbon Burial and Phosphogenesis in the Antler Foreland Basin: An Out-of-Phase Relationship During the Lower Mississippian , 2003 .

[47]  H. Strauss,et al.  The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter , 2003 .

[48]  A. Immenhauser,et al.  An alternative model for positive shifts in shallow‐marine carbonate δ13C and δ18O , 2003 .

[49]  B. Hardarson,et al.  Does depleted mantle form an intrinsic part of the Iceland plume? , 2003 .

[50]  D. Beerling,et al.  Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere , 2002 .

[51]  M. Lehmann,et al.  Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis , 2002 .

[52]  D. Schrag,et al.  On the initiation of a snowball Earth , 2002 .

[53]  D. Schrag,et al.  A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth? , 2002 .

[54]  Richard K. Anderson,et al.  Oxygen isotope corrections for online δ34S analysis , 2002 .

[55]  R. Berner,et al.  Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Wefer,et al.  Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes , 2001 .

[57]  H. Strauss,et al.  The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy , 2001 .

[58]  D. Beerling,et al.  Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Robison,et al.  A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level , 2000 .

[60]  Berner,et al.  Isotope fractionation and atmospheric oxygen: implications for phanerozoic O(2) evolution , 2000, Science.

[61]  R. Showstack Galileo spacecraft returns stunning findings about Io , 2000 .

[62]  J. C. Crowell Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System , 1999 .

[63]  J. Veizer,et al.  Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics , 1999 .

[64]  A. J. Kaufman,et al.  THE ABUNDANCE OF 13C IN MARINE ORGANIC MATTER AND ISOTOPIC FRACTIONATION IN THE GLOBAL BIOGEOCHEMICAL CYCLE OF CARBON DURING THE PAST 800 MA , 1999 .

[65]  E. Grossman,et al.  Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation , 1999 .

[66]  R. Berner,et al.  The Sulfur Cycle and Atmospheric Oxygen , 1998, Science.

[67]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[68]  R. Berner The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants , 1998 .

[69]  F. Prahl,et al.  A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain , 1997 .

[70]  J. Leventhal,et al.  Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA , 1997 .

[71]  A. J. Kaufman,et al.  Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.

[72]  J. F. Read,et al.  Cyclic Ramp-to-Basin Carbonate Deposits, Lower Mississippian, Wyoming and Montana: A Combined Field and Computer Modeling Study , 1991 .

[73]  R. Berner Atmospheric Carbon Dioxide Levels Over Phanerozoic Time , 1990, Science.

[74]  C. Powell,et al.  Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica , 1987 .

[75]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[76]  R. Garrels,et al.  Modeling atmospheric O 2 in the global sedimentary redox cycle , 1986 .

[77]  J. C. Walker,et al.  Global geochemical cycles of carbon, sulfur and oxygen. , 1986, Marine geology.

[78]  Robert Raiswell,et al.  Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory , 1983 .

[79]  M. R. Buoniconti The evolution of the carbonate shelf margins and fill of the Antler foreland basin by prograding Mississippian carbonates, northern U.S. Rockies , 2008 .

[80]  H. Lane,et al.  Stratigraphy and biostratigraphy of the Mississippian subsystem (carboniferous system) in its type region, the Mississippi River Valley of Illinois, Missouri and Iowa , 2005 .

[81]  H. Beucher,et al.  Reservoir Characterization , 2005 .

[82]  Matthew R. Saltzmana,et al.  Carbon cycle models based on extreme changes in y 13 C : an example from the lower Mississippian , 2004 .

[83]  M. Saltzman Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation , 2002 .

[84]  M. Sonnenfeld Sequence Evolution and Hierarchy within the Lower Mississippian Madison Limestone of Wyoming , 1996 .

[85]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[86]  Edward A. Johnson Depositional history of Jurassic rocks in the area of the Powder River basin, northeastern Wyoming and southeastern Montana , 1992 .

[87]  C. Scotese,et al.  Revised World maps and introduction , 1990, Geological Society, London, Memoirs.

[88]  D. L. Peck,et al.  Coral zonation of the Mississippian System in the Western Interior Province of North America , 1985 .

[89]  R. Gutschick,et al.  Mississippian Continental Margins of the Conterminous United States , 1983 .

[90]  Graham D. Farquhar,et al.  On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves , 1982 .

[91]  R. Gutschick,et al.  Mississippian Shelf Margin and Carbonate Platform from Montana to Nevada: ABSTRACT , 1980 .

[92]  W. Sando Stratigraphy of the Madison Group (Mississippian) in the Northern Part of the Wyoming-Idaho Overthrust Belt and Adjacent Areas , 1977 .

[93]  B. Mamet,et al.  Carboniferous megafaunal and microfaunal zonation in the northern Cordillera of the United States , 1969 .