Real-Time Source-Independent Quantum Random-Number Generator with Squeezed States

Random numbers are a fundamental ingredient for many applications including simulation, modelling and cryptography. Sound random numbers should be independent and uniformly distributed. Moreover, for cryptographic applications they should also be unpredictable. We demonstrate a real-time self-testing source independent quantum random number generator (QRNG) that uses squeezed light as source. We generate secure random numbers by measuring the quadratures of the electromagnetic field without making any assumptions on the source; only the detection device is trusted. We use a homodyne detection to alternatively measure the Q and P conjugate quadratures of our source. Using the entropic uncertainty relation, measurements on P allow us to estimate a bound on the min-entropy of Q conditioned on any classical or quantum side information that a malicious eavesdropper may detain. This bound gives the minimum number of secure bits we can extract from the Q measurement. We discuss the performance of different estimators for this bound. We operate this QRNG with a squeezed state and we compare its performance with a QRNG using thermal states. The real-time bit rate was 8.2 kb/s when using the squeezed source and between 5.2-7.2 kb/s when the thermal state source was used.

[1]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[2]  Hao Liang,et al.  Fully integrated 3.2 Gbps quantum random number generator with real-time extraction , 2016, ArXiv.

[3]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[4]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[5]  A. E. Rastegin,et al.  Entropic uncertainty relations for extremal unravelings of super-operators , 2010, 1006.4699.

[6]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[7]  Paolo Villoresi,et al.  Source-Device-Independent Ultrafast Quantum Random Number Generation. , 2015, Physical review letters.

[8]  Erik Woodhead,et al.  Semi-device-independent framework based on natural physical assumptions , 2016, 1612.06828.

[9]  Xiongfeng Ma,et al.  Coherence as a resource for source-independent quantum random-number generation , 2019, Physical Review A.

[10]  Tom Leonard,et al.  A Bayesian Approach to Some Multinomial Estimation and Pretesting Problems , 1977 .

[11]  James F. Dynes,et al.  Long-Term Test of a Fast and Compact Quantum Random Number Generator , 2018, Journal of Lightwave Technology.

[12]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[13]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[14]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[15]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[16]  Paolo Villoresi,et al.  Random bits, true and unbiased, from atmospheric turbulence , 2013, Scientific Reports.

[17]  J. Cirac,et al.  Extremality of Gaussian quantum states. , 2005, Physical review letters.

[18]  David R. Wolf,et al.  Estimating functions of probability distributions from a finite set of samples. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[20]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[21]  W. Marsden I and J , 2012 .

[22]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[23]  P. Hellekalek Good random number generators are (not so) easy to find , 1998 .

[24]  Zach DeVito,et al.  Opt , 2017 .

[25]  T. Symul,et al.  Maximization of Extractable Randomness in a Quantum Random-Number Generator , 2014, 1411.4512.

[26]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[27]  Xiongfeng Ma,et al.  High speed device-independent quantum random number generation without detection loophole , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[28]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[30]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[31]  D. Holste,et al.  Bayes' estimators of generalized entropies , 1998 .

[32]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[33]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[34]  Salil P. Vadhan,et al.  Theory of Cryptography , 2016, Lecture Notes in Computer Science.

[35]  T. Symul,et al.  Reconstruction of photon number conditioned states using phase randomized homodyne measurements , 2013, 2107.12118.

[36]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[37]  Alan Mink,et al.  Experimentally generated randomness certified by the impossibility of superluminal signals , 2018, Nature.

[38]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[39]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[40]  Fabian Furrer,et al.  Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle , 2014, 1405.5965.

[41]  Bo Liu,et al.  Cosmic Bell Test: Measurement Settings from Milky Way Stars. , 2016, Physical review letters.

[42]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[43]  Qiang Zhang,et al.  Experimental measurement-device-independent quantum random number generation , 2016, ArXiv.

[44]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[45]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[48]  Xiaowei Deng,et al.  Quantum random number generator based on twin beams. , 2017, Optics letters.

[49]  C. Vignat,et al.  Some results concerning maximum Renyi entropy distributions , 2005, math/0507400.

[50]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[51]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[52]  D. Kaiser,et al.  Astronomical random numbers for quantum foundations experiments , 2017, 1706.02276.

[53]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[54]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[55]  John Rarity,et al.  Quantum Random-number Generation and Key Sharing , 1994 .

[56]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[57]  Nicolas Gisin,et al.  Quantum Random Number Generation on a Mobile Phone , 2014, 1405.0435.

[58]  Paolo Villoresi,et al.  Source-device-independent heterodyne-based quantum random number generator at 17 Gbps , 2018, Nature Communications.

[59]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[60]  Robert König,et al.  Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.

[61]  Zhengyu Li,et al.  High speed continuous variable source-independent quantum random number generation , 2017, Quantum Science and Technology.

[62]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[63]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[64]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[65]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[66]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[67]  Shaohua Zhang,et al.  Random Number Generation with Cosmic Photons. , 2016, Physical review letters.

[68]  Jun Zhang,et al.  Rényi entropy uncertainty relation for successive projective measurements , 2014, Quantum Information Processing.

[69]  Moritz Mehmet,et al.  High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity. , 2013, Optics express.

[70]  Guihua Zeng,et al.  UNBIASED QUANTUM RANDOM NUMBER GENERATION BASED ON SQUEEZED VACUUM STATE , 2012 .

[71]  M. Tomasin,et al.  Quantum randomness certified by the uncertainty principle , 2014, 1401.7917.

[72]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[73]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[74]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .