Coarse-grid treatment in parallel AMG for coupled systems in CFD applications

Abstract We present an agglomeration approach for the solution of the coarse-grid problems in algebraic multigrid for coupled systems. Our implementation relies on an appropriate reordering of the variables of the merged systems. A benchmark from fluid dynamics, representing the important class of mixed elliptic–hyperbolic problems, is used to demonstrate that the performance of the suggested agglomeration scheme comes much closer to the desired behaviour of the ideal multigrid than that of alternatives described in the literature.

[1]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[2]  Maximilian Emans Efficient Parallel AMG Methods for Approximate Solutions of Linear Systems in CFD Applications , 2010 .

[3]  David W. Walker,et al.  Performance analysis of a hybrid MPI/OpenMP application on multi-core clusters , 2010, J. Comput. Sci..

[4]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[5]  B. Basara,et al.  SIMPLE‐H: a finite‐volume pressure–enthalpy coupling scheme for flows with variable density , 2012 .

[6]  Ulrike Meier Yang,et al.  On the use of relaxation parameters in hybrid smoothers , 2004, Numer. Linear Algebra Appl..

[7]  Roger W. Hockney,et al.  Performance parameters and benchmarking of supercomputers , 1991, Parallel Comput..

[8]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[9]  Ludmil T. Zikatanov,et al.  A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..

[10]  Maximilian Emans Aggregation AMG for Distributed Systems Suffering from Large Message Numbers , 2010, Euro-Par.

[11]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[12]  Maximilian Emans,et al.  Mixed-precision AMG as linear equation solver for definite systems , 2010, ICCS.

[13]  Klaus Stüben,et al.  Algebraic Multigrid for Industrial Semiconductor Device Simulation , 2003 .

[14]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[15]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[16]  T. Clees,et al.  An Efficient Algebraic Multigrid Solver Strategy for Adaptive Implicit Methods in Oil-Reservoir Simulation , 2010 .

[17]  Maximilian Emans,et al.  Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows , 2010, Parallel Comput..

[18]  David Pardo,et al.  Parallel multi-frontal solver for p adaptive finite element modeling of multi-physics computational problems , 2010, J. Comput. Sci..

[19]  Robert D. Falgout,et al.  Pursuing scalability for hypre's conceptual interfaces , 2004, TOMS.

[20]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[21]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[22]  A. Przekwas,et al.  A Finite Volume Method of Pressure-Based Coupled Solver for Incompressible/Compressible Flows , 2009 .