Modeling of electron-hole scattering in semiconductor devices

It is generally assumed in device modeling that the effects of electron-hole scattering can be fully accounted for by a suitable reduction in the electron and hole mobilities with injection level, without modifying the semiconductor device equations themselves. Physical considerations indicate that this is not the case, and that electron-hole collisions introduce a direct coupling between the electron and hole currents. This is determined from first principles, and the results of a Boltzmann calculation are described. The key result is that the impact of an electron-hole scattering event depends on the relative drift velocity between electrons and holes. In low injection, the effective minority-carrier diffusion mobility cannot be assumed to be identical to majority-carrier mobilities or to minority-carrier drift mobilities. In high injection, a reduction in the conductivity mobility does not imply a reduction in the ambipolar diffusion constant. Results for p-i-n diodes are given. >

[1]  J. Dorkel,et al.  Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level , 1981 .

[2]  R. M. Swanson,et al.  Point-contact solar cells: Modeling and experiment , 1986 .

[3]  Fischetti,et al.  Effect of the electron-plasmon interaction on the electron mobility in silicon. , 1991, Physical review. B, Condensed matter.

[4]  Neville H. Fletcher,et al.  The High Current Limit for Semiconductor Junction Devices , 1957, Proceedings of the IRE.

[5]  S. Ghandhi Semiconductor power devices , 1977 .

[6]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[7]  M. Willander,et al.  The role of intercarrier scattering in excited silicon , 1984 .

[8]  R. M. Swanson,et al.  Recombination in highly injected silicon , 1987, IEEE Transactions on Electron Devices.

[9]  F. Dannhäuser,et al.  Die abhängigkeit der trägerbeweglichkeit in silizium von der konzentration der freien ladungsträger—I☆ , 1972 .

[10]  W. Dumke The effect of electron-hole scattering on minority carrier transport in bipolar transistors , 1985 .

[11]  F. Bartoli,et al.  Phase-shift calculation of ionized impurity scattering in semiconductors , 1981 .

[12]  William Shockley,et al.  The Mobility and Life of Injected Holes and Electrons in Germanium , 1951 .

[13]  Time‐of‐flight measurements of minority‐carrier transport in p‐silicon , 1986 .

[14]  E. Paige,et al.  A theory of the effects of carrier-carrier scattering on mobility in semiconductors , 1960 .

[15]  J. Krausse Die abhängigkeit der trägerbeweglichkeit in silizium von der konzentration der freien ladungsträger—II , 1972 .

[16]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[17]  R. M. Swanson,et al.  Effect of electron‐hole scattering on the current flow in semiconductors , 1992 .

[18]  L. W. Davies Electron-Hole Scattering at High Injection-Levels in Germanium , 1962, Nature.

[19]  J. Appel INTERBAND ELECTRON-ELECTRON SCATTERING AND TRANSPORT PHENOMENA IN SEMICONDUCTORS , 1962 .

[20]  M. B. Prince,et al.  Drift Mobilities in Semiconductors. I. Germanium , 1953 .