Naive Bayesian-Based Nomogram for Prediction of Prostate Cancer Recurrence

This paper introduces a schema with naive-Bayesian classifier and patient weighting technique to develop a prostate cancer recurrence prediction model from patient data. We propose the graphical presentation of naive-Bayesian classifier with a nomogram, which can be used both for prediction or can provide means to data analysis. The resulting model was experimentally evaluated; the results were favorable both in terms of interpretability and predictive accuracy.