Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava.

[1]  T. Mahmood,et al.  Nizwaside: a new anticancer pregnane glycoside from the sap of Desmidorchis flava , 2015, Archives of pharmacal research.

[2]  R. Ullah,et al.  A fruitful decade from 2005 to 2014 for anthraquinone patents , 2015, Expert opinion on therapeutic patents.

[3]  T. Mahmood,et al.  Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava , 2015 .

[4]  Ruo-yu Zhang,et al.  Protein tyrosine phosphatases as potential therapeutic targets , 2014, Acta Pharmacologica Sinica.

[5]  Jamil Ahmad,et al.  Insilico study of anti-carcinogenic lysyl oxidase-like 2 inhibitors , 2014, Comput. Biol. Chem..

[6]  R. Csuk Betulinic acid and its derivatives: a patent review (2008 – 2013) , 2014, Expert opinion on therapeutic patents.

[7]  A. M. Vijesh,et al.  Molecular docking studies of some new imidazole derivatives for antimicrobial properties , 2013 .

[8]  K. Kindscher,et al.  Verticillosides A-M: Polyoxygenated pregnane glycosides from Asclepias verticillata L. , 2012, Phytochemistry.

[9]  Jing-Gung Chung,et al.  Anticancer potential of emodin , 2012, BioMedicine.

[10]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[11]  Daniel Kuhn,et al.  Combining Global and Local Measures for Structure-Based Druggability Predictions , 2012, J. Chem. Inf. Model..

[12]  O. Kunert,et al.  Steroidal glycosides from Caralluma umbellata , 2009 .

[13]  D. Newman,et al.  Impact of natural products on developing new anti-cancer agents. , 2009, Chemical reviews.

[14]  A. Kinghorn,et al.  Discovery of natural product anticancer agents from biodiverse organisms. , 2009, Current opinion in drug discovery & development.

[15]  K. S. Babu,et al.  A new pregnane steroid from the stems of Caralluma umbellata. , 2008, Journal of Asian natural products research.

[16]  R. Ganju,et al.  Medicinal plants and cancer chemoprevention. , 2008, Current drug metabolism.

[17]  M. Farag,et al.  Acylated pregnane glycosides from Caralluma russeliana. , 2007, Phytochemistry.

[18]  S. Dötterl,et al.  The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). , 2006, The New phytologist.

[19]  Ajay N. Jain,et al.  Scoring functions for protein-ligand docking. , 2006, Current protein & peptide science.

[20]  D. Newman,et al.  Plants as a source of anti-cancer agents. , 2005, Journal of ethnopharmacology.

[21]  M. Meselhy,et al.  New oxypregnane glycosides from Caralluma penicillata. , 2002, Planta medica.

[22]  N. Nakamura,et al.  Penicillosides A-C, C-15 oxypregnane glycosides from Caralluma penicillata. , 2001, Phytochemistry.

[23]  G. Cordell,et al.  Acylated C-21 steroidal bisdesmosidic glycosides from Caraluma umbellata. , 1997, Phytochemistry.

[24]  H. Owen,et al.  New Phytol , 2008 .

[25]  Jeong Seon Yoon,et al.  Anti-Acetylcholinesterase and Anti-Amnesic Activities of a Pregnane Glycoside, Cynatroside B, from Cynanchum atratum , 2005, Planta medica.

[26]  Tsutomu Tanaka,et al.  Pregnane glycosides from Boucerosia aucheriana , 1990 .

[27]  H. Itokawa,et al.  Pregnane glycosides from an antitumour fraction of Periploca sepium , 1988 .