Number Systems with Simplicity Hierarchies: a Generalization of Conway's Theory of surreal numbers II

In [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$ , i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$ . In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf{No}}$ that are themselves initial. It is further shown that an initial subdomain of ${\bf{No}}$ is discrete if and only if it is a subdomain of ${\bf{No}}$ ’s canonical integer part ${\bf{Oz}}$ of omnific integers. Finally, making use of class models the results of [16] are extended by showing that the theories of nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups and initial subfields of ${\bf{No}}$ .

[1]  Sedki Boughattas Resultats Optimaux sur L'Existenece d'une Partie Entiere dans les Corps Ordonnes , 1993, J. Symb. Log..

[2]  N. L. Alling,et al.  Foundations of Analysis Over Surreal Number Fields , 2012 .

[3]  H. Gaifman,et al.  Operations on relational structures, functors and classes I , 1974 .

[4]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[5]  F. R. Drake,et al.  Set theory : an introduction to large cardinals , 1974 .

[6]  M. H. Mourgues,et al.  A transfinite version of Puiseux's theorem, with applications to real closed fields , 1993 .

[7]  Elliott Mendelson Introduction to Mathematical Logic, Third Edition , 1987 .

[8]  R. Hodel An Introduction to Mathematical Logic , 1995 .

[9]  Salma Kuhlmann,et al.  The Exponential-Logarithmic Equivalence Classes of Surreal Numbers , 2012, Order.

[10]  Gregory L. Cherlin,et al.  Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..

[11]  H. Gonshor An Introduction to the Theory of Surreal Numbers , 1986 .

[12]  Philip Ehrlich The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[13]  Ronald Regan Basic Set Theory , 2000 .

[14]  August Pfizmaier,et al.  Sitzungsberichte der kaiserlichen Akademie der Wissenschaften , 1875 .

[15]  F. J. Rayner Algebraically Closed Fields Analogous to Fields of Puiseux Series , 1974 .

[16]  L. Dries,et al.  The surreal numbers as a universal $H$-field , 2015, Journal of the European Mathematical Society.

[17]  Philip Ehrlich Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..

[18]  Philip Ehrlich Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.

[19]  H. Hahn,et al.  Über die nichtarchimedischen Größensysteme , 1995 .

[20]  Philip Ehrlich Absolutely saturated models , 1989 .

[21]  Lou van den Dries,et al.  Fields of surreal numbers and exponentiation , 2001 .

[22]  Azriel Levy Basic set theory , 1979 .

[23]  Philip Ehrlich,et al.  All Numbers Great and Small , 1994 .

[24]  Philip Ehrlich,et al.  An alternative construction of Conway's ordered field No , 1988 .

[25]  D. Schleicher,et al.  An introduction to Conway’s games and numbers , 2004, math/0410026.

[26]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[27]  Salma Kuhlmann,et al.  On ηα-groups and fields , 1994 .

[28]  A. Berarducci,et al.  Surreal numbers, derivations and transseries , 2015, 1503.00315.

[29]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[30]  Philip Ehrlich Corrigendum to "Number systems with simplicity hierarchies: A generalization of Conway's theory of surreal numbers" , 2005, J. Symb. Log..

[31]  N. L. Alling,et al.  On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .

[32]  J. G. Wendel,et al.  ORDERED VECTOR SPACES , 1952 .

[33]  N. L. Alling,et al.  CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .

[34]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .