Number Systems with Simplicity Hierarchies: a Generalization of Conway's Theory of surreal numbers II
暂无分享,去创建一个
[1] Sedki Boughattas. Resultats Optimaux sur L'Existenece d'une Partie Entiere dans les Corps Ordonnes , 1993, J. Symb. Log..
[2] N. L. Alling,et al. Foundations of Analysis Over Surreal Number Fields , 2012 .
[3] H. Gaifman,et al. Operations on relational structures, functors and classes I , 1974 .
[4] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[5] F. R. Drake,et al. Set theory : an introduction to large cardinals , 1974 .
[6] M. H. Mourgues,et al. A transfinite version of Puiseux's theorem, with applications to real closed fields , 1993 .
[7] Elliott Mendelson. Introduction to Mathematical Logic, Third Edition , 1987 .
[8] R. Hodel. An Introduction to Mathematical Logic , 1995 .
[9] Salma Kuhlmann,et al. The Exponential-Logarithmic Equivalence Classes of Surreal Numbers , 2012, Order.
[10] Gregory L. Cherlin,et al. Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..
[11] H. Gonshor. An Introduction to the Theory of Surreal Numbers , 1986 .
[12] Philip Ehrlich. The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[13] Ronald Regan. Basic Set Theory , 2000 .
[14] August Pfizmaier,et al. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften , 1875 .
[15] F. J. Rayner. Algebraically Closed Fields Analogous to Fields of Puiseux Series , 1974 .
[16] L. Dries,et al. The surreal numbers as a universal $H$-field , 2015, Journal of the European Mathematical Society.
[17] Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..
[18] Philip Ehrlich. Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.
[19] H. Hahn,et al. Über die nichtarchimedischen Größensysteme , 1995 .
[20] Philip Ehrlich. Absolutely saturated models , 1989 .
[21] Lou van den Dries,et al. Fields of surreal numbers and exponentiation , 2001 .
[22] Azriel Levy. Basic set theory , 1979 .
[23] Philip Ehrlich,et al. All Numbers Great and Small , 1994 .
[24] Philip Ehrlich,et al. An alternative construction of Conway's ordered field No , 1988 .
[25] D. Schleicher,et al. An introduction to Conway’s games and numbers , 2004, math/0410026.
[26] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[27] Salma Kuhlmann,et al. On ηα-groups and fields , 1994 .
[28] A. Berarducci,et al. Surreal numbers, derivations and transseries , 2015, 1503.00315.
[29] Hans Hermes,et al. Introduction to mathematical logic , 1973, Universitext.
[30] Philip Ehrlich. Corrigendum to "Number systems with simplicity hierarchies: A generalization of Conway's theory of surreal numbers" , 2005, J. Symb. Log..
[31] N. L. Alling,et al. On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .
[32] J. G. Wendel,et al. ORDERED VECTOR SPACES , 1952 .
[33] N. L. Alling,et al. CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .
[34] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .