Multifunctional antiperovskites driven by strong magnetostructural coupling

[1]  I. Samathrakis,et al.  Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN , 2020, Physical Review B.

[2]  R. Arita,et al.  Iron-based binary ferromagnets for transverse thermoelectric conversion , 2020, Nature.

[3]  E. Tsymbal,et al.  Epitaxial antiperovskite/perovskite heterostructures for materials design , 2019, Science Advances.

[4]  Y. Mokrousov,et al.  Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides , 2019, Physical Review Materials.

[5]  T. Oguchi,et al.  Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A=Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt) , 2019, Physical Review B.

[6]  L. Elcoro,et al.  Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. , 2019, Acta crystallographica. Section A, Foundations and advances.

[7]  G. Guo,et al.  Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X=Ga , Zn, Ag, or Ni , 2019, Physical Review B.

[8]  Zexin Feng,et al.  Antiferromagnetic Piezospintronics , 2019, Advanced Electronic Materials.

[9]  E. Tsymbal,et al.  Electrically reversible magnetization at the antiperovskite/perovskite interface , 2019, Physical Review Materials.

[10]  A. Mihai,et al.  Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films , 2019, PHYSICAL REVIEW MATERIALS.

[11]  E. Tsymbal,et al.  Anomalous Hall conductivity of noncollinear magnetic antiperovskites , 2019, Physical Review Materials.

[12]  Sarah J. Watzman,et al.  Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.

[13]  Zeying Zhang,et al.  High-Throughput Screening of Magnetic Antiperovskites , 2018, Chemistry of Materials.

[14]  C. Felser,et al.  Characterization of topological band structures away from the Fermi level by the anomalous Nernst effect , 2018, Physical Review B.

[15]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[16]  X. Moya,et al.  Multisite Exchange-Enhanced Barocaloric Response in Mn3NiN , 2018, Physical Review X.

[17]  A. Mihai,et al.  Giant Piezomagnetism in Mn3NiN. , 2018, ACS applied materials & interfaces.

[18]  B. Grabowski,et al.  Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ab Initio Molecular Dynamics Study. , 2018, Physical review letters.

[19]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[20]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[21]  G. Guo,et al.  Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn 3 X (X =Sn ,Ge ,Ga ) , 2017, 1708.05933.

[22]  Stephen D. Wilson,et al.  A Simple Computational Proxy for Screening Magnetocaloric Compounds , 2017 .

[23]  J. Zemen,et al.  Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides , 2015, 1512.03470.

[24]  Qi Wang,et al.  Anomalous Hall effect in a ferromagnetic Fe 3 Sn 2 single crystal with a geometrically frustrated Fe bilayer kagome lattice , 2016, 1610.04970.

[25]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[26]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[27]  Muhammad Imran Malik,et al.  Baromagnetic Effect in Antiperovskite Mn3Ga0.95N0.94 by Neutron Powder Diffraction Analysis , 2016, Advanced materials.

[28]  Svetlana A. Barannikova,et al.  Recent progress in simulations of the paramagnetic state of magnetic materials , 2016 .

[29]  Shou-Cheng Zhang,et al.  Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2LiMn3F12 , 2016 .

[30]  M. Trassin Low energy consumption spintronics using multiferroic heterostructures , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[32]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[33]  A. Zaoui,et al.  Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion , 2015 .

[34]  Yanwei Ding,et al.  Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3 , 2015, 1508.01063.

[35]  Shou-Cheng Zhang,et al.  Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs_{2}LiMn_{3}F_{12}. , 2015, Physical review letters.

[36]  M. Acet,et al.  Effect of local structural distortions on magnetostructural transformation in Mn3SnC , 2015, 1502.04448.

[37]  Koshi Takenaka,et al.  Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.

[38]  C. Felser,et al.  Non-collinear antiferromagnets and the anomalous Hall effect , 2014, 1410.5985.

[39]  Yanan Huang,et al.  Good thermoelectric performance in strongly correlated system SnCCo3 with antiperovskite structure. , 2014, Inorganic chemistry.

[40]  L. Ke,et al.  Constituents of magnetic anisotropy and a screening of spin-orbit coupling , 2014, 1404.5546.

[41]  T. Inagaki,et al.  Magnetovolume effects in manganese nitrides with antiperovskite structure , 2014, Science and technology of advanced materials.

[42]  Q. Niu,et al.  Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.

[43]  H. Tashiro,et al.  Preparation and properties of inverse perovskite Mn3GaN thin films and heterostructures , 2013 .

[44]  Tong Peng,et al.  Mn-based antiperovskite functional materials: Review of research , 2013 .

[45]  Zhi-Wen Mo,et al.  Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels , 2013 .

[46]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[47]  K. Takenaka,et al.  Giant magnetostriction in antiperovskite Mn3CuN , 2011 .

[48]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[49]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[50]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Z. R. Yang,et al.  Large magnetic entropy change near room temperature in antiperovskite SnCMn3 , 2009, 0905.1773.

[52]  R. Sabirianov,et al.  Theory of the Piezomagnetic Effect in Mn-Based Antiperovskites , 2008 .

[53]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[54]  A. Yaresko,et al.  Electronic structure, noncollinear magnetism, and x-ray magnetic circular dichroism in the Mn3ZnC perovskite , 2007 .

[55]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[56]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[57]  Z. Fang,et al.  Berry-phase effect in anomalous thermoelectric transport. , 2006, Physical review letters.

[58]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[59]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[60]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[61]  T. Tohei,et al.  Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC , 2003 .

[62]  A. Moodenbaugh,et al.  Large magnetic entropy change in the metallic antiperovskite Mn3GaC , 2003 .

[63]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[64]  Jungho Ryu,et al.  Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .

[65]  Y. Wang,et al.  Superconductivity in the non-oxide perovskite MgCNi3 , 2001, Nature.

[66]  Ralf Eggeling,et al.  User guide , 2000 .

[67]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[68]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[69]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[70]  T. Kanomata,et al.  Magnetic properties of the intermetallic compound Mn3InC , 1992 .

[71]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[72]  R. Armstrong Review of Research. , 1990 .

[73]  D. Fruchart,et al.  Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese , 1978 .

[74]  D. Fruchart,et al.  Magnetic studies on the metallic perovskite-type compound Mn3SnN. , 1977 .

[75]  Hiroshi Watanabe,et al.  Nuclear Magnetic Resonance of Ferromagnetic Mn3AlC and Mn3GaC , 1972 .

[76]  R. Fruchart,et al.  Diffraction neutronique de Mn3GaN , 1968 .

[77]  R. Fruchart,et al.  Antiferromagnetic—Ferromagnetic Transition in the Compound Mn3GaC , 1966 .

[78]  J. Kanamori,et al.  Origin of Magnetoelectric Effect in Cr2O3 , 1961 .