Multifunctional antiperovskites driven by strong magnetostructural coupling
暂无分享,去创建一个
[1] I. Samathrakis,et al. Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN , 2020, Physical Review B.
[2] R. Arita,et al. Iron-based binary ferromagnets for transverse thermoelectric conversion , 2020, Nature.
[3] E. Tsymbal,et al. Epitaxial antiperovskite/perovskite heterostructures for materials design , 2019, Science Advances.
[4] Y. Mokrousov,et al. Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides , 2019, Physical Review Materials.
[5] T. Oguchi,et al. Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A=Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt) , 2019, Physical Review B.
[6] L. Elcoro,et al. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. , 2019, Acta crystallographica. Section A, Foundations and advances.
[7] G. Guo,et al. Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X=Ga , Zn, Ag, or Ni , 2019, Physical Review B.
[8] Zexin Feng,et al. Antiferromagnetic Piezospintronics , 2019, Advanced Electronic Materials.
[9] E. Tsymbal,et al. Electrically reversible magnetization at the antiperovskite/perovskite interface , 2019, Physical Review Materials.
[10] A. Mihai,et al. Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films , 2019, PHYSICAL REVIEW MATERIALS.
[11] E. Tsymbal,et al. Anomalous Hall conductivity of noncollinear magnetic antiperovskites , 2019, Physical Review Materials.
[12] Sarah J. Watzman,et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.
[13] Zeying Zhang,et al. High-Throughput Screening of Magnetic Antiperovskites , 2018, Chemistry of Materials.
[14] C. Felser,et al. Characterization of topological band structures away from the Fermi level by the anomalous Nernst effect , 2018, Physical Review B.
[15] R. Arita,et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.
[16] X. Moya,et al. Multisite Exchange-Enhanced Barocaloric Response in Mn3NiN , 2018, Physical Review X.
[17] A. Mihai,et al. Giant Piezomagnetism in Mn3NiN. , 2018, ACS applied materials & interfaces.
[18] B. Grabowski,et al. Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ab Initio Molecular Dynamics Study. , 2018, Physical review letters.
[19] Matthias Troyer,et al. WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..
[20] C. Felser,et al. Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .
[21] G. Guo,et al. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn 3 X (X =Sn ,Ge ,Ga ) , 2017, 1708.05933.
[22] Stephen D. Wilson,et al. A Simple Computational Proxy for Screening Magnetocaloric Compounds , 2017 .
[23] J. Zemen,et al. Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides , 2015, 1512.03470.
[24] Qi Wang,et al. Anomalous Hall effect in a ferromagnetic Fe 3 Sn 2 single crystal with a geometrically frustrated Fe bilayer kagome lattice , 2016, 1610.04970.
[25] M. Fiebig,et al. The evolution of multiferroics , 2016 .
[26] A. Manchon,et al. Antiferromagnetic spintronics , 2016, 1606.04284.
[27] Muhammad Imran Malik,et al. Baromagnetic Effect in Antiperovskite Mn3Ga0.95N0.94 by Neutron Powder Diffraction Analysis , 2016, Advanced materials.
[28] Svetlana A. Barannikova,et al. Recent progress in simulations of the paramagnetic state of magnetic materials , 2016 .
[29] Shou-Cheng Zhang,et al. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2LiMn3F12 , 2016 .
[30] M. Trassin. Low energy consumption spintronics using multiferroic heterostructures , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.
[31] C. Felser,et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.
[32] J. Wunderlich,et al. Antiferromagnetic spintronics. , 2015, Nature nanotechnology.
[33] A. Zaoui,et al. Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion , 2015 .
[34] Yanwei Ding,et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3 , 2015, 1508.01063.
[35] Shou-Cheng Zhang,et al. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs_{2}LiMn_{3}F_{12}. , 2015, Physical review letters.
[36] M. Acet,et al. Effect of local structural distortions on magnetostructural transformation in Mn3SnC , 2015, 1502.04448.
[37] Koshi Takenaka,et al. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.
[38] C. Felser,et al. Non-collinear antiferromagnets and the anomalous Hall effect , 2014, 1410.5985.
[39] Yanan Huang,et al. Good thermoelectric performance in strongly correlated system SnCCo3 with antiperovskite structure. , 2014, Inorganic chemistry.
[40] L. Ke,et al. Constituents of magnetic anisotropy and a screening of spin-orbit coupling , 2014, 1404.5546.
[41] T. Inagaki,et al. Magnetovolume effects in manganese nitrides with antiperovskite structure , 2014, Science and technology of advanced materials.
[42] Q. Niu,et al. Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.
[43] H. Tashiro,et al. Preparation and properties of inverse perovskite Mn3GaN thin films and heterostructures , 2013 .
[44] Tong Peng,et al. Mn-based antiperovskite functional materials: Review of research , 2013 .
[45] Zhi-Wen Mo,et al. Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels , 2013 .
[46] B. V. van Wees,et al. Spin caloritronics. , 2011, Nature materials.
[47] K. Takenaka,et al. Giant magnetostriction in antiperovskite Mn3CuN , 2011 .
[48] C. Nan,et al. Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.
[49] J. Sinova,et al. Anomalous hall effect , 2009, 0904.4154.
[50] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[51] Z. R. Yang,et al. Large magnetic entropy change near room temperature in antiperovskite SnCMn3 , 2009, 0905.1773.
[52] R. Sabirianov,et al. Theory of the Piezomagnetic Effect in Mn-Based Antiperovskites , 2008 .
[53] N. Marzari,et al. wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..
[54] A. Yaresko,et al. Electronic structure, noncollinear magnetism, and x-ray magnetic circular dichroism in the Mn3ZnC perovskite , 2007 .
[55] Qian Niu,et al. Berry phase effects on electronic properties , 2009, 0907.2021.
[56] Arash A. Mostofi,et al. A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .
[57] Z. Fang,et al. Berry-phase effect in anomalous thermoelectric transport. , 2006, Physical review letters.
[58] H. Takagi,et al. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .
[59] Nicola A. Spaldin,et al. The Renaissance of Magnetoelectric Multiferroics , 2005, Science.
[60] S. Sarma,et al. Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.
[61] T. Tohei,et al. Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC , 2003 .
[62] A. Moodenbaugh,et al. Large magnetic entropy change in the metallic antiperovskite Mn3GaC , 2003 .
[63] G. Ceder,et al. The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.
[64] Jungho Ryu,et al. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials , 2002 .
[65] Y. Wang,et al. Superconductivity in the non-oxide perovskite MgCNi3 , 2001, Nature.
[66] Ralf Eggeling,et al. User guide , 2000 .
[67] S. Sikdar,et al. Fundamentals and applications , 1998 .
[68] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[69] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[70] T. Kanomata,et al. Magnetic properties of the intermetallic compound Mn3InC , 1992 .
[71] Ferreira,et al. Special quasirandom structures. , 1990, Physical review letters.
[72] R. Armstrong. Review of Research. , 1990 .
[73] D. Fruchart,et al. Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese , 1978 .
[74] D. Fruchart,et al. Magnetic studies on the metallic perovskite-type compound Mn3SnN. , 1977 .
[75] Hiroshi Watanabe,et al. Nuclear Magnetic Resonance of Ferromagnetic Mn3AlC and Mn3GaC , 1972 .
[76] R. Fruchart,et al. Diffraction neutronique de Mn3GaN , 1968 .
[77] R. Fruchart,et al. Antiferromagnetic—Ferromagnetic Transition in the Compound Mn3GaC , 1966 .
[78] J. Kanamori,et al. Origin of Magnetoelectric Effect in Cr2O3 , 1961 .