Tau-Function Theory of Chaotic Quantum Transport with β = 1, 2, 4

We study the cumulants and their generating functions of the probability distributions of the conductance, shot noise and Wigner delay time in ballistic quantum dots. Our approach is based on the integrable theory of certain matrix integrals and applies to all the symmetry classes $${\beta \in \{1, 2, 4\}}$$β∈{1,2,4} of Random Matrix Theory. We compute the weak localization corrections to the mixed cumulants of the conductance and shot noise for β = 1, 4, thus proving a number of conjectures of Khoruzhenko et al. (in Phys Rev B 80:(12)125301, 2009). We derive differential equations that characterize the cumulant generating functions for all $${\beta \in \{1, 2, 4 \} }$$β∈{1,2,4}. Furthermore, when β = 2 we show that the cumulant generating function of the Wigner delay time can be expressed in terms of the Painlevé III′ transcendant. This allows us to study properties of the cumulants of the Wigner delay time in the asymptotic limit $${n \to \infty}$$n→∞. Finally, for all the symmetry classes and for any number of open channels, we derive a set of recurrence relations that are very efficient for computing cumulants at all orders.

[1]  Semiclassical theory of chaotic quantum transport. , 2002, Physical review letters.

[2]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[3]  M. Novaes Statistics of quantum transport in chaotic cavities with broken time-reversal symmetry , 2008, 0805.4590.

[4]  Politzer,et al.  Random-matrix description of the distribution of mesoscopic conductance. , 1989, Physical review. B, Condensed matter.

[5]  K. M. Frahm,et al.  Quantum mechanical time-delay matrix in chaotic scattering. , 1997 .

[6]  H. Sommers,et al.  Nonlinear statistics of quantum transport in chaotic cavities , 2007, 0711.1764.

[7]  P. Forrester Log-Gases and Random Matrices , 2010 .

[8]  GLOBAL FLUCTUATIONS FOR LINEAR STATISTICS OF β-JACOBI ENSEMBLES , 2012 .

[9]  Nalini Joshi,et al.  On Boutroux's Tritronquée Solutions of the First Painlevé Equation , 2001 .

[10]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[11]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[12]  C. Lewenkopf,et al.  QUANTUM TIME DELAY IN CHAOTIC SCATTERING : A SEMICLASSICAL APPROACH , 1997, chao-dyn/9709017.

[13]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[14]  C. Lewenkopf,et al.  On the semiclassical theory for universal transmission fluctuations in chaotic systems: the importance of unitarity , 2001, nlin/0106046.

[15]  A. Orlov,et al.  Matrix models of two-dimensional gravity and Toda theory , 1991 .

[16]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[17]  Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: application to the time-delay problem. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Two-band random matrices , 1997, cond-mat/9709309.

[19]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[20]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  P. Moerbeke,et al.  Pfaff τ -functions , 2001 .

[22]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[23]  V. Osipov,et al.  Statistics of thermal to shot noise crossover in chaotic cavities , 2009, 0902.3069.

[24]  C. Beenakker,et al.  Random-matrix theory of thermal conduction in superconducting quantum dots , 2010, 1004.2438.

[25]  S. Majumdar,et al.  Probability distributions of linear statistics in chaotic cavities and associated phase transitions , 2009, 0909.2974.

[26]  Giacomo Livan,et al.  Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities , 2011, 1103.2638.

[27]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[28]  G. Berkolaiko,et al.  Moments of the Wigner delay times , 2009, 0910.0060.

[29]  P. Moerbeke,et al.  Random matrices, Virasoro algebras, and noncommutative KP , 1998, solv-int/9812006.

[30]  Transport moments beyond the leading order , 2010, 1012.3526.

[31]  Santosh Kumar,et al.  Conductance distributions in chaotic mesoscopic cavities , 2010, 1105.4361.

[32]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[33]  Delay times and reflection in chaotic cavities with absorption. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Mark Adler,et al.  Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.

[35]  A. Guionnet,et al.  Asymptotic expansion of β matrix models in the multi-cut regime , 2013 .

[36]  Shot noise in chaotic cavities with an arbitrary number of open channels , 2005, cond-mat/0512620.

[37]  M. Shcherbina,et al.  Fluctuations of eigenvalues of matrix models and their applications , 2010, 1003.6121.

[38]  U. Smilansky,et al.  Classical irregular scattering and its quantum-mechanical implications. , 1988, Physical review letters.

[39]  G. Berkolaiko,et al.  Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Mesoscopic transport through chaotic cavities: A random S-matrix theory approach. , 1994, Physical review letters.

[41]  A. Mironov,et al.  On the origin of Virasoro constraints in matrix model: lagrangian approach , 1990 .

[42]  A. Edelman,et al.  Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models , 2005, math-ph/0510043.

[43]  U. Smilansky,et al.  Random-matrix description of chaotic scattering: Semiclassical approach. , 1990, Physical review letters.

[44]  S. Garoufalidis,et al.  Asymptotics of the instantons of Painleve I , 2010, 1002.3634.

[45]  M. Sieber,et al.  Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  C.W.J. Beenakker,et al.  Universal Quantum Signatures of Chaos in Ballistic Transport , 1994 .

[47]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[48]  P. J. Forrester Quantum conductance problems and the Jacobi ensemble , 2006 .

[49]  H. Sommers,et al.  Distribution of proper delay times in quantum chaotic scattering: a crossover from ideal to weak coupling. , 2001, Physical review letters.

[50]  V. Osipov,et al.  Are bosonic replicas faulty? , 2007, Physical review letters.

[51]  Akhilesh Pandey,et al.  Jacobi crossover ensembles of random matrices and statistics of transmission eigenvalues , 2010 .

[52]  H. Sommers,et al.  Systematic approach to statistics of conductance and shot-noise in chaotic cavities , 2009, 0906.0161.

[53]  M. Sieber,et al.  Semiclassical expansion of parametric correlation functions of the quantum time delay , 2006, nlin/0608059.

[54]  A. Guionnet,et al.  Asymptotic Expansion of β Matrix Models in the One-cut Regime , 2011, Communications in Mathematical Physics.

[55]  Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum , 2000, math-ph/0009001.

[56]  Semiclassical theory of chaotic conductors. , 2005, Physical review letters.

[57]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[58]  V. Osipov,et al.  Integrable theory of quantum transport in chaotic cavities. , 2008, Physical review letters.

[59]  Wave propagation through disordered media and universal conductance fluctuations. , 1990, Physical review letters.

[60]  Semiclassical Foundation of Universality in Quantum Chaos , 2004, nlin/0401021.

[61]  P. Forrester Evenness symmetry and inter-relationships between gap probabilities in random matrix theory , 2006 .

[62]  LETTER TO THE EDITOR: Semiclassical prediction for shot noise in chaotic cavities , 2005, cond-mat/0511292.

[63]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[64]  N. Simm,et al.  Moments of the transmission eigenvalues, proper delay times and random matrix theory I , 2011, 1103.6203.

[65]  Periodic-orbit theory of universality in quantum chaos. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  C. Beenakker,et al.  Universality in the random-matrix theory of quantum transport. , 1993, Physical review letters.

[67]  Lee,et al.  Universal conductance fluctuations in metals. , 1985, Physical review letters.

[68]  Time delay correlations in chaotic scattering: random matrix approach , 1995, chao-dyn/9501018.

[69]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[70]  S. Washburn,et al.  Aharonov-Bohm effect in normal metal quantum coherence and transport , 1986 .

[71]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[72]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[73]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[74]  Full counting statistics of chaotic cavities with many open channels , 2007, cond-mat/0701141.

[75]  E. Kanzieper,et al.  Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. , 2011, Physical review letters.

[76]  Random matrix theory of a chaotic Andreev quantum dot. , 1995, Physical review letters.

[77]  S. Iida,et al.  Statistical scattering theory, the supersymmetry method and universal conductance fluctuations , 1990 .

[78]  Mark Adler,et al.  Toda versus Pfaff lattice and related polynomials , 2002 .

[79]  Christophe Texier,et al.  Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.

[80]  Antonia Maria Tulino,et al.  Multiple-antenna capacity in the low-power regime , 2003, IEEE Trans. Inf. Theory.

[81]  Full counting statistics of chaotic cavities from classical action correlations , 2007, cond-mat/0703803.

[82]  H. Sommers,et al.  Statistics of Conductance and Shot-Noise Power for Chaotic Cavities , 2007, 0710.5370.

[83]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[84]  Oriol Bohigas,et al.  Distributions of conductance and shot noise and associated phase transitions. , 2008, Physical review letters.