Integrating forest fuels and land cover data for improved estimation of fuel consumption and carbon emissions from boreal fires

Estimating carbon emissions from wildland fires is complicated by the large variation in both forest fuels and burning conditions across Canada’s boreal forest. The potential for using spatial fuel maps to improve wildland fire carbon emission estimates in Canada’s National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) was evaluated for select wildfires (representing a transect across western Canada) occurring in 2003 and 2004 at four study areas in western Canada. Area-normalised emission rates and total emissions differed by fuels data source, mainly as a function of the treatment of open fuels in the higher resolution spatial fuel models. The use of spatial data to refine the selection of stand types that probably burned and the use of fire weather conditions specific to the fire increased the precision of total carbon emission estimates, relative to computational procedures used by Canada’s NFCMARS. Estimates of total emissions from the NFCMARS were consistent with the regional and national data sources following the spatial approach, suggesting the two approaches had equivalent accuracies. Though it cannot be said with certainty that the inclusion of this detailed information improved accuracy, the spatial approach offers the promise or potential for more accurate results, pending more consistent fuel maps, especially at finer scales.

[1]  J. Randerson,et al.  Quantifying fire‐wide carbon emissions in interior Alaska using field measurements and Landsat imagery , 2014 .

[2]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[3]  R. Sturrock,et al.  Anticipating the consequences of climate change for Canada’s boreal forest ecosystems1 , 2013 .

[4]  W. Kurz,et al.  Canadian boreal forests and climate change mitigation. , 2013 .

[5]  BoisvenueC.,et al.  Carbon in Canada’s boreal forest — A synthesis1 , 2013 .

[6]  Mike D. Flannigan,et al.  An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues , 2013 .

[7]  J. Randerson,et al.  Model comparisons for estimating carbon emissions from North American wildland fire , 2011 .

[8]  B. Kochtubajda,et al.  Exceptional cloud-to-ground lightning during an unusually warm summer in Yukon, Canada , 2011 .

[9]  B. Wotton,et al.  Defining fire spread event days for fire-growth modelling , 2011 .

[10]  W. Kurz,et al.  An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008 , 2011, Global Change Biology.

[11]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[12]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[13]  M. Mack,et al.  Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest. , 2010, Ecological applications : a publication of the Ecological Society of America.

[14]  W. A. Kurz,et al.  Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100) , 2010 .

[15]  Dominic D. P. Johnson,et al.  The evolution of overconfidence , 2009, Nature.

[16]  J. Brandt The extent of the North American boreal zone , 2009 .

[17]  M. Turetsky,et al.  Impacts of climate change on fire activity and fire management in the circumboreal forest , 2009 .

[18]  A. McGuire,et al.  Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach , 2009 .

[19]  J. A. Trofymow,et al.  CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards , 2009 .

[20]  Alan S. Cantin,et al.  Future emissions from Canadian boreal forest fires , 2009 .

[21]  W. J. Groot,et al.  Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires , 2009 .

[22]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[23]  R. Landry,et al.  Remote sensing of burn severity: experience from western Canada boreal fires* , 2008 .

[24]  W. Kurz,et al.  Mountain pine beetle and forest carbon feedback to climate change , 2008, Nature.

[25]  R. Hall,et al.  Estimating direct carbon emissions from Canadian wildland fires 1 , 2007 .

[26]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[27]  Atul K. Jain Global estimation of CO emissions using three sets of satellite data for burned area , 2007 .

[28]  Xiaoyang Zhang,et al.  Estimating emissions from fires in North America for air quality modeling , 2006 .

[29]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[30]  M. Flannigan,et al.  Future Area Burned in Canada , 2005 .

[31]  M. Gillis,et al.  Monitoring Canada's forests: The National Forest Inventory , 2005 .

[32]  P. Novelli,et al.  Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide , 2005 .

[33]  A. Weaver,et al.  Detecting the effect of climate change on Canadian forest fires , 2004 .

[34]  G. Brasseur,et al.  Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data , 2004 .

[35]  J. Randerson,et al.  Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period , 2003, Science.

[36]  K. Logan,et al.  Simulating the effects of future fire regimes on western Canadian boreal forests , 2003 .

[37]  Martin E. Alexander,et al.  Information systems in support of wildland fire management decision making in Canada , 2002 .

[38]  T. Loveland Toward a national fuels mapping strategy: Lessons from selected mapping programs , 2001 .

[39]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[40]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[41]  K. Hirsch,et al.  Direct carbon emissions from Canadian forest fires, 1959-1999 , 2001 .

[42]  J. Cihlar,et al.  Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest , 2000 .

[43]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[44]  В. В. Карманов,et al.  Технология и оборудование переработки отходов растительной биомассы для получения топливных брикетов, гранул и пилетов , 2015 .

[45]  Анатолий Александрович Косарин Пути повышения экономической эффективности сушки пиломатериалов , 2011 .

[46]  J. Metsaranta Potentially limited detectability of short-term changes in boreal fire regimes: a simulation study , 2010 .

[47]  Mitchell J. Small,et al.  Best Practice Approaches for Characterizing, Communicating, and Incorporating Scientific Uncertainty in Decision Making , 2009 .

[48]  Mike D. Flannigan,et al.  Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest , 2009 .

[49]  W. Kurz,et al.  Developing Canada's National Forest Carbon Monitoring, Accounting and Reporting System to Meet the Reporting Requirements of the Kyoto Protocol , 2006 .

[50]  Е.А. Абросимова,et al.  Правоведение. Учебник для студентов высших учебных заведений, обучающихся по неюридическим специальностям. 2-е изд., перераб. и доп , 2005 .

[51]  R. Keane,et al.  MAPPING FUELS AND FIRE REGIMES USING REMOTE SENSING, ECOSYSTEM SIMULATION, AND GRADIENT MODELING , 2004 .

[52]  G. Holden,et al.  Fuel mapping for the future , 2004 .

[53]  E. Kasischke,et al.  Carbon Release from Fires in the North American Boreal Forest , 2000 .

[54]  B. Stocks,et al.  Forest Fires and Sustainability in the Boreal Forests of Canada. , 1998 .

[55]  C. E. Van Wagner,et al.  Development and structure of the Canadian Forest Fire Weather Index System , 1987 .

[56]  Journal of Urban and Regional Analysis , 2022 .