Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations

We prove a discrete Sobolev-Poincare inequality for functions with arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev's integral representation and estimate weakly singular integrals in the context of finite volumes. We establish the result for star shaped polyhedral domains and generalize it to the finite union of overlapping star shaped domains. In the appendix we prove a discrete Poincare inequality for space dimensions greater than or equal to two.

[1]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[2]  Thierry Gallouët,et al.  Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids , 2009, J. Num. Math..

[3]  S. Sobolev,et al.  Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik , 1964 .

[4]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[5]  Yves Coudière,et al.  Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations , 2001 .

[6]  Thierry Gallouët,et al.  Error Estimates on the Approximate Finite Volume Solution of Convection Diffusion Equations with General Boundary Conditions , 2000, SIAM J. Numer. Anal..

[7]  Annegret Glitzky,et al.  Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction‐diffusion systems , 2011 .

[8]  Thierry Gallouët,et al.  A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data , 2003, SIAM J. Numer. Anal..

[9]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[10]  V. Smirnov Lehrgang der höheren mathematik , 1963 .

[11]  Annegret Glitzky Exponential decay of the free energy for discretized electro-reaction-diffusion systems , 2008 .

[12]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[13]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[14]  W. Schmeidler,et al.  W. I. Smirnow, Lehrgang der Höheren Mathematik, Teil V. XIII + 569 S. m. 3 Abb. Berlin 1962. VEB Deutscher Verlag der Wissenschaften. Preis geb. DM 36,— , 1963 .

[15]  Klaus Gärtner,et al.  Energy estimates for continuous and discretized electro-reaction-diffusion systems , 2008 .