Cassini between Venus and Earth: Detection of interstellar dust

[1] We report the successful in situ measurement of interstellar dust particles inside the orbit of the Earth with the Cosmic Dust Analyzer (CDA) on the Cassini spacecraft. The impact ionization subsystem of the CDA is similar to the instruments on Ulysses and Galileo. As the heliocentric velocity and the direction of the interstellar dust flux are well known from Ulysses measurements, a combined analysis of the impact charge signals together with geometric and kinematic spacecraft data allowed us to separate interplanetary impacts from interstellar ones. The mean interstellar flux between 0.7 and 1.2 AU derived from our analysis is 2.5 ± 0.5 · 10−5 m−2s−1, in a mass range of 5 · 10−17 kg to 10−15 kg which is in good agreement with the interstellar dust flux measured by Ulysses at 3 AU during the same time period [Landgraf et al., 2003]. The simultaneous detection of interstellar grains by Ulysses at 3 AU and approximately 1 AU by Cassini proves that big interstellar grains (radius greater than 0.4 μm), can penetrate deeply into the inner solar system.

[1]  G. Eichhorn Heating and vaporization during hypervelocity particle impact , 1978 .

[2]  G. Eichhorn Analysis of the hypervelocity impact process from impact flash measurements , 1976 .

[3]  E. Grün,et al.  Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles , 1989 .

[4]  David P. Hamilton,et al.  Dust Measurements at High Ecliptic Latitudes , 1995, Science.

[5]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[6]  Gregor E. Morfill,et al.  The Ulysses dust experiment , 1992 .

[7]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[8]  M. Landgraf Modeling the motion and distribution of interstellar dust inside the heliosphere , 1999, astro-ph/9906300.

[9]  E. Grün,et al.  The flux of interstellar dust observed by Ulysses and Galileo , 1995 .

[10]  G. Eichhorn Primary velocity dependence of impact ejecta parameters , 1978 .

[11]  M. Stübig New insights in impact ionization and in time-of-flight mass spectroscopy with micrometeoroid detectors by improved impact simulations in the laboratory , 2002 .

[12]  T. Gombosi,et al.  Interstellar dust filtration at the heliospheric interface , 2000 .

[13]  Hakan Svedhem,et al.  In situ measurements of cosmic dust , 2001 .

[14]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[15]  Ralf Srama Vom Cosmic-Dust-Analyzer zur Modellbeschreibung wissenschaftlicher Raumsonden , 2000 .

[16]  E. Grün,et al.  Penetration of the heliosphere by the interstellar dust stream during solar maximum , 2003 .

[17]  E. Grün,et al.  Deflection of the local interstellar dust flow by solar radiation pressure. , 1999, Science.

[18]  P. Frisch LISM structure — Fragmented superbubble shell? , 1996 .

[19]  Gregor E. Morfill,et al.  Interstellar dust in the heliosphere , 1994 .

[20]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[21]  Mark J. Matney,et al.  Synthesis of Observations , 2001 .

[22]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[23]  E. Grün,et al.  The Galileo Dust Detector , 1992 .