Progress and Challenges for the Bottom-Up Synthesis of Carbon Nanotubes with Discrete Chirality.

[1]  G. Bisker,et al.  Multicomponent System of Single‐Walled Carbon Nanotubes Functionalized with a Melanin‐Inspired Material for Optical Detection and Scavenging of Metals , 2022, Advanced Functional Materials.

[2]  S. Yamago,et al.  Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. , 2010, Angewandte Chemie.

[3]  Bryan M. Wong Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent Density Functional Theory , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Lawrence T Scott,et al.  Diels-Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. , 2009, Journal of the American Chemical Society.

[5]  J. Xie,et al.  Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. , 2009, Nano letters.

[6]  Yosuke Yamamoto,et al.  Selective synthesis of [12]cycloparaphenylene. , 2009, Angewandte Chemie.

[7]  L. T. Scott,et al.  New strategies for synthesizing short sections of carbon nanotubes. , 2009, Angewandte Chemie.

[8]  R. Hughes,et al.  Steps toward the synthesis of a geodesic C60H12 end cap for a C3v carbon [6,6]nanotube , 2008 .

[9]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[10]  L. Qu,et al.  Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. , 2008, Nano letters.

[11]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[12]  V. C. Moore,et al.  Amplification of Single-Walled Carbon Nanotubes from Designed Seeds: Separation of Nucleation and Growth† , 2007 .

[13]  M. Strano,et al.  Selective Functionalization and Free Solution Electrophoresis of Single-Walled Carbon Nanotubes: Separate Enrichment of Metallic and Semiconducting SWNT , 2007 .

[14]  James M Tour,et al.  Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. , 2006, Journal of the American Chemical Society.

[15]  M. Arnold,et al.  Enrichment of single-walled carbon nanotubes by diameter in density gradients. , 2005, Nano letters.

[16]  R. Smalley,et al.  Continued growth of single-walled carbon nanotubes. , 2005, Nano letters.

[17]  M. Terrones Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications , 2004 .

[18]  E. Joselevich Electronic structure and chemical reactivity of carbon nanotubes: a chemist's view. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  B. Lundqvist,et al.  Potential--energy surfaces for excited states in extended systems. , 2004, The Journal of chemical physics.

[20]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[21]  Mark A. Reed and Takhee Lee,et al.  Molecular Nanoelectronics , 2003 .

[22]  B. Varghese,et al.  Synthesis of Buta‐1,3‐diyne‐Bridged Macrocycles with (Z)‐1,4‐Diethynyl1,4‐dimethoxycyclohexa‐2,5‐diene as the Building Block , 2003 .

[23]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[24]  Tamsyn Montagnon,et al.  The Diels--Alder reaction in total synthesis. , 2002, Angewandte Chemie.

[25]  Zikang Tang,et al.  Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes , 2001, Science.

[26]  M. Danailov,et al.  Systematic investigation of absorption, fluorescence and laser properties of some p- and m-oligophenylenes. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[27]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[28]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[29]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[30]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[31]  R. Bergman,et al.  Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution , 1995 .

[32]  F. Vögtle,et al.  Auf dem Weg zu makrocyclischen para-Phenylenen , 1993 .

[33]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[34]  J. F. Stoddart,et al.  The structure-directed synthesis of cyclacene and polyacene derivatives , 1993 .

[35]  M. Yus,et al.  Easy synthesis of 2,4-dialkyl substituted phenols and anisoles from p-bensoquinone , 1992 .

[36]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[37]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[38]  M. Yus,et al.  Stereoselective two-step chemical preparation of 1,4-dialkyl-1,4-dimethoxycyclohexa-2,5-dienes , 1991 .

[39]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[40]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[41]  G. W. Morrow,et al.  Syntheses of Para-Terphenyl via Reductive Deoxygenation of Quinol Derivatives , 1995 .

[42]  D. Salahub,et al.  Density Functional Theory, Its Gaussian Implementation and Applications to Complex Systems , 1994 .

[43]  J. A. Berson,et al.  Discoveries missed, discoveries made: creativity, influence, and fame in chemistry , 1992 .

[44]  E. Clar,et al.  927. Syntheses of coronene and 1 : 2-7 : 8-dibenzocoronene , 1957 .