Compositions and collisions at degree p2

A univariate polynomial f over a field is decomposable if [email protected]?h=g(h) for nonlinear polynomials g and h. In order to count the decomposables, one wants to know, under a suitable normalization, the number of equal-degree collisions of the form [email protected]?h=g^@[email protected]?h^@? with (g,h) (g^@?,h^@?) and degg=degg^@?. Such collisions only occur in the wild case, where the field characteristic p divides degf. Reasonable bounds on the number of decomposables over a finite field are known, but they are less sharp in the wild case, in particular for degree p^2. We provide a classification of all polynomials of degree p^2 with a collision. It yields the exact number of decomposable polynomials of degree p^2 over a finite field of characteristic p. We also present an efficient algorithm that determines whether a given polynomial of degree p^2 has a collision or not.

[1]  Igor E. Shparlinski,et al.  On the values of the divisor function , 2007 .

[2]  T. Apostol Introduction to analytic number theory , 1976 .

[3]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[4]  L. Dickson The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .

[5]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[6]  Joachim von zur Gathen,et al.  Compositions and collisions at degree p2 , 2012, ISSAC.

[7]  Umberto Zannier,et al.  The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t) , 2003, Compositio Mathematica.

[8]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..

[9]  N. S. Barnett,et al.  Private communication , 1969 .

[10]  Joachim von zur Gathen,et al.  Functional Decomposition of Polynomials: The Wild Case , 1990, J. Symb. Comput..

[11]  A. Schinzel Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .

[12]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[13]  O. Ore On a special class of polynomials , 1933 .

[14]  Stephen D. Cohen,et al.  EXCEPTIONAL POLYNOMIALS AND THE REDUCIBILITY OF SUBSTITUTION POLYNOMIALS , 2014 .

[15]  Stephen D. Cohen,et al.  A class of exceptional polynomials , 1994 .

[16]  J. Ritt,et al.  Prime and composite polynomials , 1922 .

[17]  Joachim von zur Gathen,et al.  Shift-invariant polynomials and Ritt’s Second Theorem , 2010 .

[18]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[19]  Gary L. Miller,et al.  Solvability by radicals is in polynomial time , 1983, STOC.

[20]  George Havas,et al.  On decomposition of sub-linearised-polynomials , 2004, Journal of the Australian Mathematical Society.

[21]  Richard Zippel,et al.  Rational function decomposition , 1991, ISSAC '91.

[22]  Antonia W. Bluher,et al.  On xq+1+ax+b , 2004, Finite Fields Their Appl..

[23]  Stephen D. Cohen,et al.  The factorable core of polynomials over finite fields , 1990, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[24]  Stephen D. Cohen REDUCIBILITY OF SUB-LINEAR POLYNOMIALS OVER A FINITE FIELD , 1985 .

[25]  Joachim von zur Gathen Lower bounds for decomposable univariate wild polynomials , 2013, J. Symb. Comput..

[26]  U. Zannier,et al.  Ritt's Second Theorem in arbitrary characteristic. , 1993 .

[27]  Joachim von zur Gathen,et al.  Counting Decomposable Univariate Polynomials , 2008, Comb. Probab. Comput..

[28]  Howard Levi Composite Polynomials with Coefficients in an Arbitrary Field of Characteristic Zero , 1942 .

[29]  Andrzej Schinzel,et al.  Selected topics on polynomials , 1982 .

[30]  J. Neukirch Algebraic Number Theory , 1999 .

[31]  Joachim von zur Gathen,et al.  Composition collisions and projective polynomials: statement of results , 2010, ISSAC.

[32]  Joachim von zur Gathen,et al.  The number of decomposable univariate polynomials. extended abstract , 2009, ISSAC '09.

[33]  Raoul Blankertz A polynomial time algorithm for computing all minimal decompositions of a polynomial , 2014, ACCA.

[34]  M. Fried,et al.  On the invariance of chains of fields , 1969 .

[35]  Richard Zippel,et al.  Polynomial Decomposition Algorithms , 1985, J. Symb. Comput..

[36]  Raoul Blankertz,et al.  Decomposition of Polynomials , 2011, ArXiv.

[37]  D. R. Heath-Brown Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .

[38]  W. Ledermann Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966 .

[39]  Mark Giesbrecht Some Results on the Functional Decomposition of Polynomials , 2010, ArXiv.

[40]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[41]  R. Tennant Algebra , 1941, Nature.