暂无分享,去创建一个
Joachim von zur Gathen | Konstantin Ziegler | Raoul Blankertz | J. Gathen | K. Ziegler | Raoul Blankertz
[1] Igor E. Shparlinski,et al. On the values of the divisor function , 2007 .
[2] T. Apostol. Introduction to analytic number theory , 1976 .
[3] David Goss,et al. Basic Structures of Function Field Arithmetic , 1997 .
[4] L. Dickson. The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .
[5] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[6] Joachim von zur Gathen,et al. Compositions and collisions at degree p2 , 2012, ISSAC.
[7] Umberto Zannier,et al. The Equation f(X) = f(Y) in Rational Functions X = X(t), Y = Y(t) , 2003, Compositio Mathematica.
[8] Joachim von zur Gathen,et al. Functional Decomposition of Polynomials: The Tame Case , 1990, J. Symb. Comput..
[9] N. S. Barnett,et al. Private communication , 1969 .
[10] Joachim von zur Gathen,et al. Functional Decomposition of Polynomials: The Wild Case , 1990, J. Symb. Comput..
[11] A. Schinzel. Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .
[12] Gary L. Mullen,et al. Finite Fields: Theory, Applications and Algorithms , 1994 .
[13] O. Ore. On a special class of polynomials , 1933 .
[14] Stephen D. Cohen,et al. EXCEPTIONAL POLYNOMIALS AND THE REDUCIBILITY OF SUBSTITUTION POLYNOMIALS , 2014 .
[15] Stephen D. Cohen,et al. A class of exceptional polynomials , 1994 .
[16] J. Ritt,et al. Prime and composite polynomials , 1922 .
[17] Joachim von zur Gathen,et al. Shift-invariant polynomials and Ritt’s Second Theorem , 2010 .
[18] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[19] Gary L. Miller,et al. Solvability by radicals is in polynomial time , 1983, STOC.
[20] George Havas,et al. On decomposition of sub-linearised-polynomials , 2004, Journal of the Australian Mathematical Society.
[21] Richard Zippel,et al. Rational function decomposition , 1991, ISSAC '91.
[22] Antonia W. Bluher,et al. On xq+1+ax+b , 2004, Finite Fields Their Appl..
[23] Stephen D. Cohen,et al. The factorable core of polynomials over finite fields , 1990, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[24] Stephen D. Cohen. REDUCIBILITY OF SUB-LINEAR POLYNOMIALS OVER A FINITE FIELD , 1985 .
[25] Joachim von zur Gathen. Lower bounds for decomposable univariate wild polynomials , 2013, J. Symb. Comput..
[26] U. Zannier,et al. Ritt's Second Theorem in arbitrary characteristic. , 1993 .
[27] Joachim von zur Gathen,et al. Counting Decomposable Univariate Polynomials , 2008, Comb. Probab. Comput..
[28] Howard Levi. Composite Polynomials with Coefficients in an Arbitrary Field of Characteristic Zero , 1942 .
[29] Andrzej Schinzel,et al. Selected topics on polynomials , 1982 .
[30] J. Neukirch. Algebraic Number Theory , 1999 .
[31] Joachim von zur Gathen,et al. Composition collisions and projective polynomials: statement of results , 2010, ISSAC.
[32] Joachim von zur Gathen,et al. The number of decomposable univariate polynomials. extended abstract , 2009, ISSAC '09.
[33] Raoul Blankertz. A polynomial time algorithm for computing all minimal decompositions of a polynomial , 2014, ACCA.
[34] M. Fried,et al. On the invariance of chains of fields , 1969 .
[35] Richard Zippel,et al. Polynomial Decomposition Algorithms , 1985, J. Symb. Comput..
[36] Raoul Blankertz,et al. Decomposition of Polynomials , 2011, ArXiv.
[37] D. R. Heath-Brown. Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .
[38] W. Ledermann. Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966 .
[39] Mark Giesbrecht. Some Results on the Functional Decomposition of Polynomials , 2010, ArXiv.
[40] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[41] R. Tennant. Algebra , 1941, Nature.