Comparison of Constraint-Handling Techniques for Metaheuristic Optimization

Many design problems in engineering have highly nonlinear constraints and the proper handling of such constraints can be important to ensure solution quality. There are many different ways of handling constraints and different algorithms for optimization problems, which makes it difficult to choose for users. This paper compares six different constraint-handling techniques such as penalty methods, barrier functions, \(\epsilon \)-constrained method, feasibility criteria and stochastic ranking. The pressure vessel design problem is solved by the flower pollination algorithm, and results show that stochastic ranking and \(\epsilon \)-constrained method are most effective for this type of design optimization.

[1]  Efrén Mezura-Montes,et al.  A Comparison of Constraint Handling Techniques for Dynamic Constrained Optimization Problems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[2]  T. Takahama,et al.  Solving Constrained Optimization Problems by the ε Constrained Particle Swarm Optimizer with Adaptive Velocity Limit Control , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[3]  Atidel B. Hadj-Alouane,et al.  A dual genetic algorithm for bounded integer programs James C. Bean, Atidel Ben Hadj-Alouane. , 1993 .

[4]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[5]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[6]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[7]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[9]  Carlos A. Coello Coello,et al.  Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer , 2008, Informatica.

[10]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[11]  David W. Coit,et al.  Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems , 1996, INFORMS J. Comput..

[12]  Xin-She Yang,et al.  Variants of the Flower Pollination Algorithm: A Review , 2018 .

[13]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[14]  Yuxin Zhao,et al.  Global Convergence Analysis of the Flower Pollination Algorithm: A Discrete-Time Markov Chain Approach , 2018, ICCS.

[15]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[16]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[17]  Xin-She Yang,et al.  Optimization Techniques and Applications with Examples , 2018 .

[18]  E. S. Ali,et al.  Combined economic and emission dispatch solution using Flower Pollination Algorithm , 2016 .

[19]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[20]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[21]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  Xin She Yang,et al.  True global optimality of the pressure vessel design problem: a benchmark for bio-inspired optimisation algorithms , 2013, Int. J. Bio Inspired Comput..

[24]  Helio J. C. Barbosa,et al.  A new adaptive penalty scheme for genetic algorithms , 2003, Inf. Sci..

[25]  Xin-She Yang,et al.  Nature-Inspired Optimization Algorithms: Challenges and Open Problems , 2020, J. Comput. Sci..

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Xin-She Yang,et al.  EEG-based person identification through Binary Flower Pollination Algorithm , 2016, Expert Syst. Appl..

[28]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[29]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[30]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[31]  Xin-She Yang,et al.  Cuckoo Search and Firefly Algorithm: Theory and Applications , 2013 .