Numerical Assessment of Error Estimators for Euler Equations

Grid convergence studies are conducted to assess four error estimators for their asymptotic behavior: explicit residual, solution reconstruction, Richardson extrapolation, and solution of the error equations. Their accuracy, reliability, and efficitivity to predict the true error are verified on the quasi-one-dimensional Euler equations solved by a second-order accurate finite volume method

[1]  E. Süli,et al.  A dual graph-norm refinement indicator for finite volume approximations of the Euler equations , 1998 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[4]  X. Zhang,et al.  A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws , 2000 .

[5]  Ivo Babuška,et al.  The problem of the selection of an a posteriori error indicator based on smoothening techniques , 1993 .

[6]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[7]  Jean-Yves Trépanier,et al.  A comparison of three error estimation techniques for finite-volume solutions of compressible flows , 2000 .

[8]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[9]  Thomas Sonar Strong and Weak Norm Refinement Indicators Based on the Finite Element Residual for Compressible Flow Computation : I. The Steady Case , 1993, IMPACT Comput. Sci. Eng..

[10]  Endre Süli,et al.  Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity , 1996 .

[11]  Ricardo Camarero,et al.  AN A POSTERIORI ERROR ESTIMATION METHOD BASED ON ERROR EQUATIONS , 1997 .

[12]  Michael J. Aftosmis,et al.  On the Accuracy, Stability, and Monotonicity of Various Reconstruction Algorithms for Unstructured Meshes , 1994 .

[13]  J. Z. Zhu A posteriori error estimation—the relationship between different procedures , 1997 .

[14]  J. Trépanier,et al.  Numerical simulation of the gas flow in a circuit-breaker , 1992 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[17]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[18]  Thomas Sonar,et al.  Dynamic adaptivity and residual control in unsteady compressible flow computation , 1994 .